|
|
|
|
|
|
Study of Synthesis and Spectral Property of Europium Cryptate |
SUN Yan-wen1, CHANG Yu2, JIN Yu-fen1, XIE Wen-bing2, CHANG Jing1, YU Ting1*, PAN Li-hua2 |
1. The Second Hospital of Jilin University, Changchun 130041, China
2. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China |
|
|
Abstract Synthesis of rare-earth chelate is a key part of homogeneous time-resolved fluorescence immunoassay. To synthesize optimal rare-earth chelate, we select diethyl 2,6-dibromomethyl-3,5-pyridinecarboxylate as raw material and optimally synthesize Li+⊂2,6-{N,N’,N,N’-[bis(2,2’-bipyridine-6,6’-dimethyl)] bis(aminomethyl)}-pyridine-3,5-diethyl diester,and then the spectral difference of europium cryptate synthesized by the different reactive systems of acetonitrile and methyl alcohol are discussed. Studies show the excitation spectra(the maximum excitation wavelength is 310 nm), emission spectra(the maximum emission wavelength is 616 nm) and quantum yield of europium cryptate synthesized by the different reactive systems are consistent. Fluorescence intensity are linear with the concentration of europium in the range of 10-8~10-5 mol·L-1 (R2=0.993 73, 0.986 65), respectively. But the fluorescence intensity between them (c=2.5×10-5 mol·L-1) are slightly different. Their fluorescence lifetime are 825 and 830 μs, respectively. Therefore, europium cryptate synthesized has big Stoke’s shift, high fluorescence intensity, long fluorescence lifetime and so on. Pyridine-2,2-bipyridine in europium cryptate can protect europium from interference. It is an ideal europium cryptate used for the labeling of biomolecules such as protein, nucleic acid. This study not only expands the synthesis of new rare earth chelate,but also lays the foundation for the establishment of homogeneous time-resolved fluorescence immunoassay.
|
Received: 2017-08-08
Accepted: 2017-12-19
|
|
Corresponding Authors:
YU Ting
E-mail: yuting485@163.com
|
|
[1] Philippe,Nakache,E. Omri,et al. U. S. Patent,WO/2013/042120,2013.
[2] Blanc E,Wagner P,Plaisier F,et al. Analytical Biochemistry,2015,484: 105.
[3] O’Malley W I,Abdelkader E H,Aulsebrook M L,et al. Inorganic Chemistry, 2016, 55(4): 1674.
[4] Algar W R,Kim H,Medintz I L,et al. Coordination Chemistry Reviews,2014,263-264(1): 65.
[5] Chaudhry C,Davis J,Yong Z,et al. Analytical Biochemistry,2016,497: 8.
[6] Lin G F,Liu T C,Hou J Y,et al. Journal of Fluorescence,2015,25(2): 361.
[7] Rossant C J,Matthews C,Neal F,et al. Journal of Biomolecular Screening,2015,20(4): 508.
[8] Nrskovlauritsen L,Thomsen A R,Brunerosborne H. International Journal of Molecular Sciences,2014,15(2): 2554.
[9] Wang J,Liu H,Huang X,et al. Microchimica Acta,2016,183(2): 749.
[10] Farino Z J, Morgenstern T J, Vallaghe J, et al. Plos One, 2016, 11(2): e0148684.
[11] Einhorn L, Krapfenbauer K. EPMA Journal, 2015, 6(1): 23.
[12] Cohen N, Mechaly A, Mazor O, et al. Journal of Fluorescence, 2014, 24(3): 795.
[13] Lehmusvuori A, Tapio A H, Mki-Teeri P, et al. Analytical Biochemistry, 2013, 436(1): 16.
[14] Xu H,Cao C S,Kang X M,et al. Dalton Transactions,2016,45(45): 18003.
[15] Zwier J M, Bazin H, Lamarque L, et al. Inorganic Chemistry, 2014, 53(4): 1854.
[16] Secundo F,Bacigalupo M A,Scalera C,et al. Journal of Food Composition and Analysis, 2012, 25(2): 221.
[17] Santos J G, Dutra J D L, Alves Junior S, et al. Journal of the Brazilian Chemical Society, 2013, 24(2): 236.
[18] Reddy D R, Pedró Rosa L E, et al. Bioconjugate Chemistry, 2011, 22(7): 1402. |
[1] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
[2] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
[3] |
ZHANG Jia-lin, ZHANG Qian, PEI Jing-cheng*, HUANG Wei-zhi. Gemological and Spectroscopy Characteristics of Synthetic Blue-Green Beryl by Hydrothermal Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2258-2262. |
[4] |
WANG Chong1, MO Jian-ye1,2, LI Dong-dong1, SHE Jiang-bo2, LIU Zhen2. Application and Research of NaYF4∶Yb3+/Eu3+ Upconverting Luminescent Micro-Nano Particles in Anti-Counterfeiting Identification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1525-1529. |
[5] |
WANG Shi-xia, HU Tian-yi, YANG Meng. Study on Preparation of Ag-Doped ZnO Nanomaterials and Phase Transition at High Pressure Using Diamond Anvil Cell and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 484-488. |
[6] |
WANG Zhi-wei1, 2, 3, YUE Guang-yang1*, WU Xiao-dong1, ZHANG Wen2, WANG Pu-chang2, SONG Xue-lian2, WU Jia-hai2. A Study on Ground Deformations Monitoring in Tianshan Mountain of Xinjiang on Active Microwave Spectral Imagines[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2366-2372. |
[7] |
XIONG Yang1,2, XU Jun1,2, QIU Su-yan1,2, WEI Yi-hua1,2, ZHANG Jin-yan1,2*. Study on Interaction Between Phenylethanolamine A and CdTe Nanomaterials by Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1402-1406. |
[8] |
WANG Meng-xin 1,2, LUO A-li1,2. Spectral Analysis of Host Galaxy from Possible Dual AGNs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 290-293. |
[9] |
TAN Guan-ni1, GAO Hong1,2*, SONG Jie3, SHANG Shi-bin1,2, SONG Zhan-qian1,2. Synthesis, Spatial Configuration and Spectral Properties of Donor-Acceptor Molecules with Dehydroabietic Acid Triarylamine as Donors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2083-2090. |
[10] |
LIANG Rong1, LAN Yan1, 2, ZHANG Tian-yang2, LU Tai-jin3, CHEN Mu-yu1, WANG Xiao-qing1, ZHANG Xiao-hu1. Multi-Spectroscopy Studies on Large Grained HPHT Synthetic Diamonds from Shandong, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1840-1845. |
[11] |
DONG Xue1, QI Li-jian2, ZHOU Zheng-yu2, SUN Dui-xiong1*. Spectral Characteristics and Application of Synthetic Hydrothermal Red Beryl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(02): 517-521. |
[12] |
LIU Jun-shao1, HUANG Lei2, XIE Wen-ju1, LIN Hao1, CHEN Yi-ping2, PAN Hai-bo2*. Preparation of Four Phenoxy Phthalocyanine Zinc/ZnO Composites with in-situ Method by DBU Liquid Phase Catalyst and Its Photocatalytic Selectivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1486-1491. |
[13] |
WANG Zhen-xing, XUE Juan-qin, LI Di. Studies on the Ionic Liquid-Assisted Hydrothermal Synthesis of Zn2SnO4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1198-1204. |
[14] |
ZHANG Yi1, 2, CHEN Guo-qing1, 2*, ZHU Chun1, 2, ZHU Zhuo-wei1, 2, XU Rui-yu1, 2 . Soft Measurement of the Purity of the Synthetic Edible Pigment Powder Using Fluorescence Spectroscopy Combined with SVM [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3978-3985. |
[15] |
TANG Jiu-kai1, WU Jing1*, CHENG Cheng1, LI Zhong-hua1, ZHAO Yu-fei1, WANG Shi-feng1, WANG Yong-jun2. Fingerprint Properties of Semi Synthetic Penicillin Pharmaceutical Wastewater[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3602-3607. |
|
|
|
|