光谱学与光谱分析 |
|
|
|
|
|
A Novel Scheme SVR(Haar) for Automatically Estimating Stellar Atmospheric Parameters from Spectrum |
LU Yu, LI Xiang-ru*, WANG Yong-jun, YANG Tan |
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
|
|
Abstract A novel scheme SVR(Haar) is proposed in the present work for automatically estimating the physical parameters of stellar spectra. The observed spectrum is disturbed usually by noise which is caused by the universe radiation, the atmosphere and observation equipment. Furthermore, the noise usually is the component of the spectrum with higher frequency. Therefore, we propose to extract features with Haar wavelet by removing higher frequency components. Researches show that this procedure can improve the accuracy of the estimation. Secondly, the support vector regression model is employed for estimating physical parameters of the stellar spectra. In this method, the ε insensitive domain techniques can further improve the probability to the slight distortion of the spectrum from imperfect calibration, and enhance the robustness of the proposed scheme. To check the effectiveness of the proposed scheme SVR(Haar), we did experiments extensively on authoritative simulated stellar spectra and real spectra observed by SLOAN, and compared it with the typical methods in the literature. The results show that the SVR(Haar) is better than the principal component analysis and non-parametric regression model in the literature.
|
Received: 2012-11-09
Accepted: 2013-02-25
|
|
Corresponding Authors:
LI Xiang-ru
E-mail: xiangru.li@gmail.com
|
|
[1] Wu Yue, Singh H P, Prugniel P, et al. Astronomy & Astrophysics, 2011, 525(A71): 1. [2] Lee Y S, Beers T C, Prieto C A, et al. The Astronomica Journal, 2011, 141(3): 90. [3] Smolinski J P, Lee Y S, Beers T C, et al. The Astronomical Journal, 2011, 141(3): 89. [4] Kordopatis G, Recio-Blanco A, de Laverny P, et al. Astronomy & Astrophysics, 2011, 535(A106): 1. [5] Du Wei, Luo A-li, Zhao Yong-heng. Astronomical Journal, 2012, 143(2): 1. [6] Nieva M F, Przybilla N. Astronomy & Astrophysics, 2012, 539(A143): 1. [7] Koleva M, Prugniel P, Bouchard A, et al. Astronomy & Astrophysics, 2009, 501(3): 1269. [8] Wu Y, Luo A, Li H N, et al. Research in Astronomy and Astrophysics, 2011, 11(8): 924. [9] Lee Y S, Beers T C, Sivarani T, et al. The Astronomical Journal, 2008, 136(5): 2022. [10] Zhang Jiannan, Luo Ali, Zhao Yongheng. Research in Astronomy and Astrophysics, 2009, 9(6): 712. [11] Fiorentin P R, Bailer-Jones C A L, Lee Y S, et al. Astronomy & Astrophysics, 2007, 467: 1373. [12] Manteiga M, Ordóez D, Dafonte C, et al. Publications of the Astronomical Society of the Pacific,2010, 122(891): 608. [13] LI Xiang-ru(李乡儒). Progress in Astronomy(天文学进展),2012,30(1): 94. |
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[3] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[4] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[5] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[6] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[7] |
MENG Shan1, 2, LI Xin-guo1, 2*. Estimation of Surface Soil Organic Carbon Content in Lakeside Oasis Based on Hyperspectral Wavelet Energy Feature Vector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3853-3861. |
[8] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[9] |
FANG Zheng, WANG Han-bo. Measurement of Plastic Film Thickness Based on X-Ray Absorption
Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3461-3468. |
[10] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[11] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[12] |
JIA Zong-chao1, WANG Zi-jian1, LI Xue-ying1, 2*, QIU Hui-min1, HOU Guang-li1, FAN Ping-ping1*. Marine Sediment Particle Size Classification Based on the Fusion of
Principal Component Analysis and Continuous Projection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3075-3080. |
[13] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[14] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[15] |
JIA Hao1, 3, 4, ZHANG Wei-fang1, 3, LEI Jing-wei1, 3*, LI Ying-ying1, 3, YANG Chun-jing2, 3*, XIE Cai-xia1, 3, GONG Hai-yan1, 3, DING Xin-yu1, YAO Tian-yi1. Study on Infrared Fingerprint of the Classical Famous
Prescription Yiguanjian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3202-3210. |
|
|
|
|