光谱学与光谱分析 |
|
|
|
|
|
Design of High-Efficiency Double Compound Parabolic Concentrator System in Near Infrared Noninvasive Biochemical Analysis |
GAO Jing1,2, LU Qi-peng1*, PENG Zhong-qi1, DING Hai-quan1, GAO Hong-zhi1 |
1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.
|
Received: 2012-10-15
Accepted: 2012-12-26
|
|
Corresponding Authors:
LU Qi-peng
E-mail: luqipeng@126.com
|
|
[1] CHEN Xing-dan(陈星旦). Optics and Precision Engineering(光学 精密工程),2008,16(5):759. [2] LI Ya-ping,ZHANG Guang-jun,LI Qing-bo(李亚萍,张广军,李庆波). Acta Optica Sinica(光学学报),2010,30(3):854. [3] Shinde A A, Prasad R K. IJEST, 2011, 3(12): 8325. [4] Huang Zhenhao, Hao Changning, Zhang Linlin, et al. Proc. of SPIE, 2012, 81931: 81931O-1. [5] Jaspreet Kaur, Jagdish Kumar, Sardana H K, et al. International Conference on Optics and Photonics, 2009. [6] Yang Yue, Chen Wenliang, Shi Zhenzhi, et al. Chinese Optics Letters, 2010, 8(4): 421. [7] Miguel Pleitez, Hermann von Lilienfeld-Toal, Werner Mntele. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 85: 61. [8] Welford W T, Winston R. The Optics of Nonimaging Concentrators. New York: Academic Press, 1978. [9] Kara A Shell, Scott A Brown, Mark A Schuetz, et al. Proc. of SPIE, 2011, 8108: 81080A-1. [10] Roland Winston. Journal of Photonics for Energy, 2012, 2: 025501-1. [11] LI Qu, YU Xiu-qin, QU Gang, et al(李 劬,虞秀琴,屈 刚,等). Acta Optica Sinica(光学学报),1998,18(8):1097. [12] Segal A, Epstein M. Proc. of SPIE, 2009, 7423: 74230H-1. [13] MA Ming, ZHENG Hong-fei, LI Jia-chun(马 鸣,郑宏飞,李家春). Solar Energy(太阳能),2011,7:33. [14] Kenji Iino, Katsuhiko Maruo, Hidenobu Arimoto,et al. Optical Review, 2003, 10(6): 600. |
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
LI Xin-quan1, 2,ZHANG Jun-qiang1, 3*,WU Cong-jun1,MA Jian1, 2,LU Tian-jiao1, 2,YANG Bin3. Optical Design of Airborne Large Field of View Wide Band Polarization Spectral Imaging System Based on PSIM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 250-257. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
HE Qing-yuan1, 2, REN Yi1, 2, LIU Jing-hua1, 2, LIU Li1, 2, YANG Hao1, 2, LI Zheng-peng1, 2, ZHAN Qiu-wen1, 2*. Study on Rapid Determination of Qualities of Alfalfa Hay Based on NIRS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3753-3757. |
[8] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[9] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[10] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[11] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[12] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[13] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[14] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[15] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
|
|
|
|