光谱学与光谱分析 |
|
|
|
|
|
The Spectroscopic Properties of a New Rhodamine B Schiff-Base Fluorescent Derivative |
ZHANG Ling-fei1, ZHAO Jiang-lin1, ZENG Xi1, MU Lan1*, WEI Gang2 |
1. Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China 2. CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia |
|
|
Abstract A derivative with Schiff-base structure was synthesized. Fluorescence and visible absorption spectra show that the presence of Fe3+ induces the formation of a Fe3+ complex, observing significant enhancement of fluorescence and absorption. The results show that the derivative is not only a good fluorescence and colorimetric chemosensor for Fe3+, but also a metal complex fluorescent probe for BSA.
|
Received: 2010-07-14
Accepted: 2010-10-05
|
|
Corresponding Authors:
MU Lan
E-mail: sci.lmou@gzu.edu.cn
|
|
[1] ZHAO Wen-feng, CHEN Lang-xing, HE Xi-wen, et al(赵文峰, 陈朗星, 何锡文, 等). Chemical Reagents(化学试剂), 2006, 28(5): 269. [2] Desvergne J P, Czarnik A W. Chemosensors for Ion and Molecule Recognition. Dordrecht: Kluwer,1997. [3] Amendola V, Fabbrizzi L, Forti F, et al. Coord Chem Rev., 2006, 250: 273. [4] Valeur B. Molecular Fluorescence: Principles and Applications. New York: Wiley-VCH Verlag GmbH, 2001. Chapter 10: 295. [5] Zheng X Y, Zhang W J, Mu L, et al. J. Incl. Phenom. Macrocycl. Chem.,2010, 68: 139. [6] ZENG Xi, WU Chong, DONG Lei, et al(曾 晞, 吴 翀, 董 蕾, 等). Sci. China Ser. B-Chem.(中国科学B辑), 2009, 4(52): 523. [7] Zeng X, Dong L, Wu C, et al. Sensors and Actuators B., 2009, 141: 506. [8] Wu C, Zhang W J, Zeng X, et al. J. Incl. Phenom. Macrocycl. Chem., 2010, 66: 125. [9] Dong L, Wu C, Zeng X, et al. Sensors and Actuators B., 2010, 145: 433. [10] Sumner J P, Kopelman R. Analyst., 2005, 130: 52. [11] Ma Y, Luo W, Quinn P J, et al. Med. Chem., 2004, 47: 6349. [12] Tumambac G E, Rosencrance C M, Wolf C. Tetrahedron., 2004, 60: 11293. [13] Xiang Y, Tong A J. Org. Lett., 2006, 8: 1549. [14] Lee M H, Wu J S, Lee J W, et al. Org. Lett., 2007, 9: 2501. [15] ZHANG Ling-fei, ZHAO Jiang-lin, ZENG Xi, et al(张玲菲, 赵江林, 曾 晞, 等). Chinese Journal of Inorganic Chemistry(无机化学学报), 2010, 26(10): 1796. [16] Wu J S, Hwang I, Kim K S, et al. Org. Lett., 2007, 9(5): 907. [17] YANG Xi, PAN Zu-ting, MA Yong, et al(杨 洗, 潘祖亭, 马 勇, 等). Journal of Analytical Chemistry(分析化学学报), 2003, 19(6): 588. [18] Zhang X, Shiraishi Y, Hirai T. Tetrahedron Lett., 2007, 48: 5455. [19] Lee M H, Wu J S, Lee J W, et al. Org. Lett., 2007, 9: 2501. [20] YANG Man-man, YANG Pin, ZHANG Li-wei, et al(杨曼曼, 杨 频, 张立伟, 等). Chinese Science Bulletin(科学通报), 1994, 39(1): 374.
|
[1] |
ZHOU Ao1, 2, YUE Zheng-bo1, 2, LIU A-zuan1, 2, GAO Yi-jun3, WANG Shao-ping3, CHUAI Xin3, DENG Rui1, WANG Jin1, 2*. Spectral Analysis of Extracellular Polymers During Iron Dissimilar
Reduction by Salt-Tolerant Shewanella Aquimarina[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1320-1328. |
[2] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[3] |
WANG Jun1, WANG Zhou-li2, CHENG Jing-jing1. Interaction Between Tartrazine and Bovine Serum Albumin Using Multispectral Method and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 904-909. |
[4] |
WANG Xiao-xia1,3*, WU Hao1, NIE Zhi-hua2, MA Li-tong1,3*, CUI Jin-long1, SAI Hua-zheng1, CHENG Jian-guo1. Study on the Interaction Between Fulvic Acid and Bovine Serum Albumin by Multispectral and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2904-2910. |
[5] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[6] |
TUO Xun1, SONG Ji-min1, FU Hao2, LÜ Xiao-lan1*. Study on Interaction Between Hexabromocyclododecane and Bovine Serum Albumin by Spectroscopy and Computer Simulation Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1487-1492. |
[7] |
LI Xue1, WANG Li1, LIU Guang-xian1*, TU Zong-cai2. Effect of Urea on Glycosylation of BSA Based on Spectral Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 478-483. |
[8] |
LI Xing-xing, ZHANG Xiang, HUANG Xue-song*. Interaction Between Three Sulfur-Containing Amino Acids in Garlic and Bovine Serum Albumin Determined by Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3483-3488. |
[9] |
HUANG Fang1, LIU Ming-xue1, 2*, XIONG Jie1, CHEN Lü-qi1, GAO Zhu-xin1, CHEN Hui-ming1, WANG Dan-ni1. Effect of Far-Infrared Ceramic Powder on the Interaction Between Essential Oil and BSA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2358-2365. |
[10] |
LIU Rong-xiang, LI Jie*, SU Wen-rou, ZHANG Xue-feng, LI Jia-wei, MENG Liu-yang. FTIR and XPS Analysis Comparing the Activation Mechanism of Ca2+ and Fe3+ on Quartz[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1876-1882. |
[11] |
WANG Xiao-xia1*, NIE Zhi-hua2, MA Li-tong1, CUI Jin-long1, SAI Hua-zheng1,ZHAO Wen-yuan1. Study on the Interaction Between Minocycline and Bovine Serum Albumin by Multi Spectral Method and Molecular Docking Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1503-1508. |
[12] |
HUANG Chao-bo3, XU Han3, YANG Ming-guan3, LI Zhen-jing1, 3, YANG Hua1, 3, WANG Chang-lu1, 2, 3, ZHOU Qing-li1, 2, 3*. The Interaction between Rubropunctamine and Bovine Serum Albumin Using Spectrometry and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3102-3108. |
[13] |
ZHANG Qiu-lan1,2, XIE Li-xin3, YANG Lin-hui3, TUO Xun2, NI Yong-nian1,2*. Studies on the Interaction between Leucomalachite Green with Bovine Serum Albumin by MCR-ALS and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 851-856. |
[14] |
TAN Hong-ying. Investigation of Bovine Serum Albumin at Different Temperatures by Terahertz Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3374-3378. |
[15] |
LUO Dan, ZHOU Guang-ming*, ZHANG Lu-tao, ZHANG Cai-hong. Analysis of Indomethacin by Surface Enhanced Raman Spectroscopy Based on L-Cys@Ag[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3112-3116. |
|
|
|
|