光谱学与光谱分析 |
|
|
|
|
|
Comparative Investigation of Molecules Releasing from Intra-Hollow Calcium-Alginate Capsules Using Fluorimetry |
LI Ye,LI Yang,XU Shu-na,LI Kun,LU Yi-qiang |
Department of Chemistry, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract In this paper, the authors employ three different types of dye molecules, Nile red, Rhodamine 6G, fluorescein and a fluorescent protein-R-phycoerythrin (R-PE). The Rhodamine 6G is positively charged molecules, fluorescein is negatively charged molecules, and Nile red is neutral molecules. The R-phycoerythrins have either a net positive or negative charge which is balanced at the isoelectric point (4.22). It is negatively charged molecules also under our experimental condition. The Nile red, rhodamine 6G, fluorescein and R-phycoerythrin are trapped into alginate calcium hollow capsule respectively. The diffusion processes of those molecules from calcium alginate capsule to solution are measured based on a fluorescence method. The results indicate that electrical characteristics of encapsulated molecules have effect on their diffusion behaviors. The positively charged rhodamine 6G is well accordance with a model of control release from porous polymer membranes. The neutral molecules not only can be released from porous polymer framework, they also can directly dissolve out through polymer membrane. The electrostatic repulsion between fluorescein and negatively charged calcium alginate membranes will accelerate the molecular motion, which is propitious to molecules directly dissolving out through polymer membrane. Based on Fick’s law of diffusion, R-PEs can be releases from porous polymer framework. It shows the longest equilibrium time. Comparing neutral molecules, negatively and positively charge molecules show the stronger interaction on electric polymer membrane, which results in that the diffusion coefficients of rhodamine 6G and fluorescein are less than that of neutral molecule Nile red. The consequences obtained here should readily explain analogous control releasing behaviors of other functional molecules.
|
Received: 2010-09-26
Accepted: 2010-12-08
|
|
Corresponding Authors:
LI Ye
E-mail: liye@ustb.edu.cn
|
|
[1] Johnston A P R, Such G K, Caruso F. Angew. Chem. Int. Ed., 2010, 49: 2664. [2] LIU Xiu-dong, YU Wei-ting, WANG Wei, et al(刘袖洞, 于炜婷, 王 为, 等). Progress in Chemistry(化学进展), 2008, 1: 126. [3] JIANG Wen-jun, LI Zhe-zhao,ZHANG Chun-xiang, et al(蒋文俊,李哲曌,张春祥, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010,30(5):1329. [4] Hunkeler D. Trends Polymer Sci., 1997, 5: 286. [5] Smidsrod O, Skjak-Braek G, Trends Biotechnol., 1990, 8: 71. [6] Chickering D E, Jacob, J S, Desai, T A. et al. J. Control Release, 1997, 48: 35. [7] Wayne R, Gombotz S, Fong W, Adv. Drug. Deliv. Rev., 1998, 31: 267. [8] Ching A L, Liew C V, Heng P W S, et al. Int. J. Pharm., 2008, 355: 259. [9] LI Ling-bing, ZHANG Na(李凌冰, 张 娜). J. Shandong Univ.(山东大学学报), 2003, 38: 61. [10] XU Tong-wen, HE Bing-lin(徐铜文, 何炳林). Science in China(B)(中国科学(B辑)), 1998, 28: 178. [11] Mansfeld J. Enzyme. Microb. Technol. 1991, 13: 240. [12] LIANG Li, ZHU Nai-yu (梁 丽, 竺迺珏). Science in China(B)(中国科学(B辑)), 1990, (12): 1277. [13] LI Ye, HAN Wei-wei, LIAO Ming-xia,et al(李 晔, 韩伟伟, 廖明霞,等). Acta Polymerica Sinica(高分子学报), 2010, 4: 456. [14] Alberghina L. Protein Engineering in Industry Biotechnology. Amsterdam:Harwood Academic Publisher, 2000. 40. [15] Elcin Y. Biomaterials, 1995, 16: 1157. [16] LIU Shan-kui, ZHONG Yan-qiang, LIU Nai-bing(刘善奎, 钟延强, 刘乃兵). Chin. Phar J.(中国药学杂志), 1999, 34: 749. [17] Busch N A, Kim T, Victor A. et al. Macromolecules, 2000, 33: 5932. [18] Ritger P L, Peppas N A. J Control. Release, 1987, 5: 23. [19] Nguyen A L, Luong J H. Biotech. Bioeng., 1986, 28: 1261. |
[1] |
SUN Zhi-ming1, LI Hui1, FENG Yi-bo1, GAO Yu-hang1, PEI Jia-huan1, CHANG Li1, LUO Yun-jing1, ZOU Ming-qiang2*, WANG Cong1*. Surface Charge Regulation of Single Sites Improves the Sensitivity of
Raman Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1075-1082. |
[2] |
LU Yan-hua, XU Min-min, YAO Jian-lin*. Preparation and Photoelectrocatalytic Properties Study of TiO2-Ag
Nanocomposites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1112-1116. |
[3] |
ZONG Zhi-fang1, XU Wei-cheng2, CHEN De-peng1*, TANG Gang1, ZHOU Xiao-hui1, DONG Wei1, WU Yu-xi2. Preparation Mechanism of Decylic Acid-Palmitic Acid/SiO2@TiO2
Photocatalytic Phase Change Microcapsules Based on
Multiple Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1306-1313. |
[4] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[5] |
TANG Guang-tong1, YAN Hui-bo1, WANG Chao-yang1, LIU Zhi-qiang1, LI Xin1, YAN Xiao-pei1, ZHANG Zhong-nong2, LOU Chun2*. Experimental Investigation on Hydrocarbon Diffusion Flames: Effects of Combustion Atmospheres on Flame Spectrum and Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1654-1660. |
[6] |
XU Qiu-mei. Optical Emission From the Al Surface Bombarded by 260~520 keV Krq+(8≤q≤17) Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 544-548. |
[7] |
ZHOU Bing1, LIU Tian-shu2, MU Shuo2, WANG Peng-jie2, SHEN Qing-wu1, LUO Jie1, 2*. Using Spectroscopy Methods to Analyze the Key Textural Characteristics of Fermented Milk With High Creaminess Intensity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1194-1198. |
[8] |
WU Zhi-feng, DAI Cai-hong, ZHAO Wei-qiang, XU Nan, LI Ling, WANG Yan-fei, LIN Yan-dong. Spectral Irradiance Responsivity Calibration Using Tunable Lasers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 853-857. |
[9] |
GAO Rui-lin1, YANG Peng-shuo1, XU Gang2, WU Xiao-wen1, YANG Chang1, SHI Xin-yuan1*. Study on Establishment of Near-Infrared Quantitative Model for Salvianolic Acid B in Naoxintong Capsule Based on the System Modeling Idea[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3573-3578. |
[10] |
ZHANG Lang, TAN Jian-guo*, LIU Yao. Methane/Air Coaxial Jet Flame Reaction Heat and Quantitative Characterization of OH*/CH*[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1703-1709. |
[11] |
YAN Shu-jun, LIU Yang-yi, HE Xiao-xiao, ZHENG Ming, CAO Xiao-dan, XU Jian-hua, CHEN Jin-quan*. Excited State Dynamics of Bilirubin Dimethyl Ester-Copper Ions Complex[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1674-1678. |
[12] |
ZHANG Ying-hua1, 2, 3, LI Ang1*, XIE Pin-hua1, HUANG Ye-yuan1, HU Zhao-kun1, ZHANG Chao-gang1. Ultraviolet Two-Dimensional Non-Dispersive Imaging of SO2 Column Density in Power Plant Plume[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 688-693. |
[13] |
QUE Hua-li1, 2, YANG Wen-liang1, XIN Xiu-li1, MA Dong-hao1, ZHANG Xian-feng1, ZHU An-ning1*. Ammonia Volatilization from Farmland Measured by Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 885-890. |
[14] |
CAO Hai-qing, HAN Tong-shuai, LIU Xue-yu, LIU Jin*. Extracting Linear Attenuance of Analyte in Turbid Scattering Media and Prediction Model Transfer Based Thereon[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3711-3717. |
[15] |
YAO Yuan1,2, XIAO Jing2*, TAN Jing-fang2, WANG Jian2, ZHU Mei2, YIN Zhao-yang2, CAO Li-feng1. Improved Performance with a Hybrid Cathodic Interfacial Layer in OLEDs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3383-3387. |
|
|
|
|