光谱学与光谱分析 |
|
|
|
|
|
Analysis on Urban Vegetations Reflectance Characteristics in Shanghai |
LIN Wen-peng1, LI Hou-zeng1, HUANG Jing-feng2, LIU Dong-yan1, ZONG Wei1, HU Xiao-meng1 |
1. Department of Geography, College of Tourism, Shanghai Normal University, Shanghai 200234, China 2. Institute of Agriculture Remote Sensing & Information System Application,Zhejiang University,Hangzhou 310029, China |
|
|
Abstract The spectral features of ground objects are not only the brief contents of mechanism of remote sensing, but also the important basis in remote sensing application. As one of main components of terrestrial ecosystems, urban forest plays a key role in maintaining urban ecosystem balance. In the present paper, the authors adopted FieldSpec3 portable spectroscope made by American ASD Company, and investigated or examined some spots in the Kangjian park of Shanghai, China. The spectra of euonymus japonicus L.cv, hypericum monogynum, sabina chinensis, ophiopogon japonicus, viburnum awabuki, and buxus sinica were measured. According to the actual conditions, the authors analyzed the data noise characteristic of the spectrum and got rid of the noise with Savitzky Golay method. Meanwhile,differential spectrum technology was used to remove the environmental background influence. Then the authors analyzed their features and variation of these spectral curves from the vegetation canopy and leaf level respectively. The research on spectral reflectance characteristics for urban vegetations is very significant. And the result of this research can be used for the study of physical chemistry performances of urban vegetation, remote sensing retrieval, vegetation classification, vegetation survey and environmental monitoring in urban area.
|
Received: 2010-02-18
Accepted: 2010-05-22
|
|
Corresponding Authors:
LIN Wen-peng
E-mail: linwenpeng@163.com; linwenpeng@hotmail.com
|
|
[1] TONG Qing-xi,ZHANG Bing,ZHENG Lan-fen(童庆禧,张 兵,郑兰芬). Hyperspectral Remote Sensing-Principle,Technology and Application(高光谱遥感——原理、技术、应用). Beijing:Higher Education Press(北京:高等教育出版社). 2006. [2] SU Li-hong, LI Xiao-wen, WANG Jin-di, et al(苏理宏, 李小文, 王锦地,等). Advance in Earth Science(地球科学进展),2003, 18(2): 185. [3] YI Qiu-xiang, HUANG Jing-feng, WANG Xiu-zhen(易秋香, 黄敬峰, 王秀珍). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2007, 26(5): 393. [4] Wang Y, Huang J F, Wang X E. International Journal of Remote Sensing, 2009, 30(17): 4493. [5] DU Hua-qiang,JIN Wei,GE Hong-li,et al(杜华强,金 伟,葛宏立, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(2): 463. [6] Thenkabaila Prasad S, Enclonab Eden A, Ashton Mark S. Remote Sensing of Environment, 2004, 90: 23. [7] CHEN Zhi-gang, SHU Jiong(陈志刚, 束 炯). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2008, 27(5): 378. [8] Tsai F, Philpot W. Remote Sensing of Environment, 1998, 66: 41. [9] LIN Wen-peng, ZHAO Min, ZHANG Yi-fei, et al(林文鹏, 赵 敏, 张翼飞, 等). Science of Surveying and Mapping(测绘科学), 2008,33(2): 57. [10] SHI Run-he,ZHUANG Da-fang,NIU Zheng(施润和, 庄大方, 牛 铮). Journal of Remote Sensing(遥感学报),2007, 11(5): 626. [11] LIN Wen-peng, WANG Chang-yao, CHU De-ping(林文鹏,王长耀,储德平). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2006, 22(9): 128. [12] Bacoura C, Jacquemoud S, Tourbier Y M, et al. Remote Sensing of Environment, 2002, 79: 72. [13] LIU Jiao-di, CAO Wei-bin, MA Rong(刘姣娣, 曹卫彬, 马 蓉, 等). Scientia Agricultura Sinica(中国农业科学), 2008, 41(12): 4301. [14] ZHANG Xue-hong, LIU Shao-min, HE Bei-bei(张雪红,刘绍民,何蓓蓓). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2008, 24(10): 151.
|
[1] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[2] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[3] |
TAN Yang1, WU Xiao-hong2, 3*, WU Bin4, SHEN Yan-jun1, LIU Jin-mao1. Qualitative Analysis of Pesticide Residues on Chinese Cabbage Based on GK Improved Possibilistic C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1465-1470. |
[4] |
TANG Guang-tong1, YAN Hui-bo1, WANG Chao-yang1, LIU Zhi-qiang1, LI Xin1, YAN Xiao-pei1, ZHANG Zhong-nong2, LOU Chun2*. Experimental Investigation on Hydrocarbon Diffusion Flames: Effects of Combustion Atmospheres on Flame Spectrum and Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1654-1660. |
[5] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[6] |
SONG Hong-yan, ZHAO Hang, YAN Xia, SHI Xiao-feng, MA Jun*. Adsorption Characteristics of Marine Contaminant Polychlorinated Biphenyls Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 704-712. |
[7] |
ZHOU Jun1, 2, YANG Yang2, YAO Yao2, LI Zi-wen3, WANG Jian3, HOU Chang-jun1*. Application of Mid-Infrared Spectroscopy in the Analysis of Key Indexes of Strong Flavour Chinese Spirits Base Liquor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 764-768. |
[8] |
LI Xue-ping1, 2, 3, ZENG Qiang1, 2, 3*. Development and Progress of Spectral Analysis in Coal Structure Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 350-357. |
[9] |
GAO Le-le1, ZHONG Liang1, DONG Hai-ling1, LAI Yu-qiang5, LI Lian1,3*, ZANG Heng-chang1, 2, 3, 4*. Characterization of Moisture Absorption Process of Stevia and Rapid Determination of Rebaudioside a Content by Using Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 415-422. |
[10] |
HAN Yu1, SONG Shao-zhong2*, ZHANG Jia-huan3, TAN Yong1*, LIU Chun-yu1, ZHOU Yun-quan1, QU Guan-nan1, HAN Yan-li4, ZHANG Jing3, HU Yu3, MENG Wei-shi3, LIU Huan-jun5, ZHANG Yi-xiang1, LI Jia-yi1. Research on Soybean Bacterial Disease Markers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 459-463. |
[11] |
GONG Ge-lian1, 2, YOU Li-bing3, LI Cong-ying4, FANG Xiao-dong3, SUN Wei-dong4, 5, 6. Advances in Equipment for Deep Ultra-Violet Excimer Laser Ablation Coupled Plasma Mass and Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 555-560. |
[12] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 524-529. |
[13] |
CHEN Fu-shan1, WANG Gao-min1, WU Yue1, LU Peng2, JI Zhe1, 2*. Advances in the Application of Confocal Raman Spectroscopy in Lignocellulosic Cell Walls Pretreatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 15-19. |
[14] |
JIA Wen-bao1, TANG Xin-ru1, ZHANG Xin-lei1, SHAO Jin-fa2, XIONG Gen-chao1, LING Yong-sheng1, HEI Dai-qian3, SHAN Qing1*. Study on Sample Preparation Method of Plant Powder Samples for Total Reflection X-Ray Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3815-3821. |
[15] |
PENG Jian-wen1, XIAO Chong1, SONG Qiang1, PENG Zhong-chao1, HUANG Ruo-sen1, YANG Ya-dong3, TANG Gang1, 2, 3*. Flame Retardant Mechanism Investigation of Thermoplastic Polyurethane Composite/Ammonium Polyphosphate/Aluminum Hydroxide Composites Based on Spectroscopy Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3901-3908. |
|
|
|
|