光谱学与光谱分析 |
|
|
|
|
|
Studies on a New Fluorescence-Enhanced System of Nucleic Acids-Morin-Al(Ⅲ) |
LIN Xu-cong, XIE Zeng-hong*, GUO Liang-qia, CHEN Guo-nan |
Department of Chemistry, Fuzhou University, Fuzhou 350002, China |
|
|
Abstract A fluorescence-enhanced system was developed for the determination of nucleic acids by using morin-aluminum(Ⅲ) complex as a new fluorescent probe. In aqueous solution, morin-aluminum(Ⅲ) complex showed maximum excitation and emission wavelengths at 420.0 nm and 532.8 nm, respectively, and its fluorescence could be greatly enhanced in the presence of nucleic acids. Under optimal conditions, the calibration graph was linear over the range 0.25-1.50 μg·mL-1 for fish sperm DNA, 0.10-1.60 μg·mL-1 for salmon sperm DNA, 0.25-2.00 μg·mL-1 for calf thymus DNA and 0.25-2.00 μg·mL-1 for yeast RNA. The corresponding detection limits are 3 ng·mL-1, 2 ng·mL-1, 2 ng·mL-1 and 3 ng·mL-1, respectively. Applied for the determination of nucleic acids in synthetic samples, the relative standard deviation for five replicates is less than 3.6%, and the recovery ranges from 93.3% to 107.9%. Additionally, the interaction mechanism of morin-aluminum(Ⅲ) with nucleic acids is also discussed.
|
Received: 2003-04-06
Accepted: 2004-08-18
|
|
Corresponding Authors:
XIE Zeng-hong
|
|
Cite this article: |
LIN Xu-cong,XIE Zeng-hong,GUO Liang-qia, et al. Studies on a New Fluorescence-Enhanced System of Nucleic Acids-Morin-Al(Ⅲ) [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(10): 1230-1234.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2004/V24/I10/1230 |
[1] Talavera Eva M, Afkrir Moustafa, Salto Rafael et al. Journal of Photochemistry and Photobiology B: Biology, 2000, 59: 9. [2] LING Lian-sheng,HE Zhi-ke,ZENG Yun-e(凌连生,何治柯,曾云鹗). Chinese Journal of Analytical Chemistry (分析化学),2001, 29(6): 721. [3] WU Ming-hu, SONG Gong-wu, LING Lian-sheng, HE Zhi-ke, ZENG Yun-e(吴鸣虎,宋功武,凌连生,何治柯,曾云鹗). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2000, 20(4): 575. [4] Song Yumin, Kang Jingwan, Zhou Jing et al. Spectrochimica Acta Part A, 2000, 56: 2491. [5] ZHANG Hong-man, GUO Xiang-qun, ZHAO Yi-bing et al. Analytica Chimica Acta, 1998, 361: 9. [6] Yang Jinghe, Lin Cunguo, Zhang Guiling et al. Spectrochimica Acta Part A, 1998, 54: 2019. [7] Stivers James T. Nucleic Acids Research, 1998, 26(16): 3837. [8] Lorenz Mike, Hillisch Alexander, Diekmann Stephan. Molecular Biotechnology, 2002, 82: 197. [9] HUANG Cheng-zhi, LI Yuan-fang,TONG Shen-yang. Analytical Letters, 1997, 30(7): 1305. [10] Dietrich Anja, Buschmann Volker, Muller Christian et al. Molecular Biotechnology, 2002, 82: 211.
|
[1] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[2] |
LI Meng-yao1, 2, WANG Shu-ya1, XIE Yun-feng1, LIU Yun-guo3*, ZHAI Chen1*. Detection of Protease Deterioration Factor in Tomato by Fluorescence Sensor Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3477-3482. |
[3] |
JIA Hui-jie, ZHU Ning, GAO Yuan-yuan, WANG Ya-qi, SUO Quan-ling*. Effect of Substituent Structure of Benzothiazole Probe on Recognition to Metal Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3594-3598. |
[4] |
TIAN Hui-yan1,LIU Yu1, HUANG Jiao-qi1, XIE Feng-xin1, HUANG Guo-rong1, LIAO Pu1, FU Wei-ling1, ZHANG Yang2*. Research Progress and Application of Surface-Enhanced Raman Scattering Technique in Nucleic Acid Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3021-3028. |
[5] |
LIU Xiao-hong1,2, DENG Hua1, CHANG Lin2, ZHANG Wei2, JIANG Shan2*. Recent Progress of SERS for Environmental Estrogen Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3038-3047. |
[6] |
TENG Yuan-jie, WEI Qi-zhen, LIU Wen-han, LIU Jiang-mei, NIE Yong-hui, LI Pan. Cy3-Labeled Aptamer Combined with Surface-Enhanced Raman Scattering Using for Specific Detection of Trace Acetamiprid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2462-2467. |
[7] |
ZHU Dan-dan1, 2, QU Peng2*, SUN Chuang2, YANG Yuan2, LIU Dao-sheng1*, SHEN Qi3, HAO Yuan-qiang2*. A Benzothiazole-Based Long-Wavelength Fluorescent Probe for Dual-Response to Viscosity and H2O2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1775-1779. |
[8] |
MA Hong-yan,WANG Jing-yuan, ZHANG Yue-cheng*, YANG Xiao-jun, CHEN Xiao-li. Determination of Dopamine by Fluorescence Quenching-Recovery Method with Peanut Carbon Quantum Dots as Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1093-1098. |
[9] |
ZHAO Chen, HONG Cheng-yi, LIN Zheng-zhong, HUANG Zhi-yong*. Colorimetric Detection of Trace Malachite Green by Label-Free RNA-Aptamer and AuNPs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 831-836. |
[10] |
LIAN Jie1, REN Yi-fei2, YANG Rui-qin1*, HAO Hong-xia3. Rapid Detection System of 2,4,6-Trinitrophenol (TNP) Based on Fluorescent Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 804-808. |
[11] |
CHEN Shuo-ran, HUANG Su-qin, HAN Peng-ju*, YE Chang-qing, SONG Sa-sa, WANG Xiao-mei*. Preparation of 9,10-Diphenylanthracene Derivative and Its Detection for Cu2+ by Up/Down-Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3769-3775. |
[12] |
SHI Ji-yong, LI Wen-ting, HU Xue-tao, SHI Yong-qiang, ZOU Xiao-bo*. A New Ratiometric Fluorescence Probe Based on CuNCs and CQDs and Its Application in the Detection of Hg2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3925-3931. |
[13] |
CHEN Shuo-ran1, ZHENG Dao-yuan1, LIU Teng1, YE Chang-qing1*, SONG Yan-lin2. Ratiometric Fluorescent Temperature Probe Based on Up/Down-Conversion Luminescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3088-3095. |
[14] |
LI Fei-fei1,3, LU Yi-song2, YANG Sheng-yuan1,3*, LIN Xi1,3, CHEN Wei1, LIU Can1,3, XIAO Fu-bing1,3, LIANG Hao1,3. A New Label-Free Fluorometric Assay for ATP Based on Split Aptamer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2769-2773. |
[15] |
HU Xue-tao, SHI Ji-yong, LI Yan-xiao, SHI Yong-qiang, LI Wen-ting, ZOU Xiao-bo*. Sensitive Determination of Trypsin in Urine Using Carbon Nitride Quantum Dots and Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2901-2906. |
|
|
|
|