|
|
|
|
|
|
Recent Progress of SERS for Environmental Estrogen Detection |
LIU Xiao-hong1,2, DENG Hua1, CHANG Lin2, ZHANG Wei2, JIANG Shan2* |
1. Chongqing Youth Vacational & Technical College, Chongqing 400712, China
2. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China |
|
|
Abstract The Environmental estrogen is an exogenous endocrine disruptor which can be enriched in organisms, and usually exits in the environment at a low concentration. Meanwhile, it can interfere with the normal function of the endocrine system and induce the multiple organism pathological changes. Therefore, the detection of environmental estrogen at low concentration with high specificity is important. Surface enhanced Raman scattering (SERS) is a technique with high sensitivity enabling trace amount analysis and even single-molecule level detection of the target molecule. This paper aims to summarize the recent development of environmental estrogen (such as estradiol, polychlorinated biphenyls, bisphenol A, etc.) detected by using SERS technology. Firstly, the SERS substrates without modification are used for direct detection. Secondly, the modified substrates (such as cyclodextrin, molecularly imprinted polymer, antigen and antibody and nucleic acid aptamer, etc.) are used for highly specific and sensitive detection of environmental estrogens. Finally, the development of SERS in environmental estrogen detection are summarized and prospected.
|
Received: 2019-10-27
Accepted: 2020-01-16
|
|
Corresponding Authors:
JIANG Shan
E-mail: jiangshanss23@163.com
|
|
[1] WEI Hui-bin, LIN Jin-ming(魏慧斌,林金明). Life Science Instruments(生命科学仪器), 2005, 3(5): 3.
[2] LIU Xian-li, LIU Bin, DENG Nan-sheng(刘先利,刘 彬,邓南圣). Shanghai Environmental Sciences(上海环境科学), 2003, 22(1): 57.
[3] Plíšková M, Vondráček J, Fernandez C R, et al. Environmental Health Perspectives, 2005, 113(10): 1277.
[4] Schlücker S. Angewandte Chemie International Edition, 2014, 53(19), 4756.
[5] Moskovits M. The Journal of Chemical Physics, 1978, 69(9): 4159.
[6] LUO Zhi-xun, FANG Yan(骆智训,方 炎). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(2): 358.
[7] Chao J, Cao W F , Su S, et al. Journal of Materials Chemistry B, 2016, 4(10): 1757.
[8] LI Yan-yan, LIU Ying-ya, FAN Xiao, et al(李艳艳,刘迎亚,范 霄,等). Chemistry Bulletin(化学通报), 2016, 79(3): 213.
[9] Zhao Y, Zheng F J, Ke W, et al. Analytical Chemistry, 2019, 91(11): 7162.
[10] Jiang J, Gao J M, Guo J S, et al. Chemosphere, 2016, 161: 96.
[11] He S X, Xie W Y, Zhang W, et al. Spectrochimica Acta A: Molecular Biomolecular Spectroscopy, 2015, 137: 1092.
[12] Joblin S, Williams R, Johnson A, et al. Environmental Health Perspectives, 2006, 114(1): 32.
[13] Wang Z, Liu H Y, Liu S J. Advanced Science News, 2017, 4(2): 1600248.
[14] Liehr J G. Environmental Reviews, 2000, 21(1): 40.
[15] Herbst A L. Gynecologic Oncology, 2000, 76(2): 147.
[16] Gonzalez T L, Rae J M, Colacino J A. Toxicology, 2019, 421: 41.
[17] SHI Xiong-jie, LIU Chun-sheng, YU Ke, et al(史熊杰,刘春生,余 珂,等). Progress in chemistry(化学进展), 2009, 21(2): 340.
[18] Decastro B R, Susan A K, Spengler J D, et al. Environmental Science & Technology, 2006, 40(8): 2819.
[19] WANG Hong, SHEN Ying-wa(王 宏, 沈英娃). China Environmental Science(中国环境科学), 1999, 19(5): 427.
[20] Nelson R E, Grebe S K, O’Kane D J, et al. Clinical Chemistry, 2004, 50(2): 373.
[21] REN Bin, TIAN Zhong-qun(任 斌, 田中群). Modern Instruments(现代仪器), 2004, 5: 1.
[22] Zhao X H, Deng M, Rao G F, et al. Small, 2018, 14(38): 1802477.
[23] Tian Z Q, Ren B, Wu D Y. Journal of Physical Chemistry B, 2002, 106(37): 9463.
[24] Li J F, Huang Y F, Ding Y, et al. Nature, 2010, 464(7287): 392.
[25] Lombardi J R, Birke R L. The Journal of Physical Chemistry, 2014, 118(20): 11120.
[26] Miao P, Qin J K, Shen Y F, et al. Small, 2018, 14: e1704079.
[27] Gu L J, Ma C L, Zhang X H, et al. Chemical Communications, 2018, 54(49): 6332.
[28] Talley C E, Jackson J B, Oubre C, et al. Nano Letters, 2005, 5(8): 1569.
[29] Zhao X, Wang W Z, Liang Y J, et al. Sensors and Actuators B: Chemical, 2019, 279: 313.
[30] Kneipp K, Wang Y, Harald K, et al. Physical Review Letters, 1997, 78(9): 1667.
[31] DING Song-yuan,WU De-yin, YANG Zhi-lin, et al(丁松园,吴德印,杨志林,等). Chemical Journal of Chinese Universities(高等学校化学学报), 2008, 29: 2569.
[32] Tong L M, Zhu T, Liu Z F. Chemical Society Reviews, 2011, 40(3): 1296.
[33] Link S, El-Sayed M A. Journal of Physical Chemistry, 1999, 103(40): 8410.
[34] Kołątaj K, Krajczewski J, Kudelski A. Applied Surface Science, 2018, 456: 932.
[35] Liang H Y, Li Z P, Wang W Z, et al. Advanced Materials, 2009, 21(45): 4614.
[36] Stoerzinger K A, Lin J L, Odom T W. Chemical Science, 2011, 2(8): 1435.
[37] Huang Z L, Meng G W, Huang q, et al. Advanced Materials, 2010, 22(37), 4136.
[38] Gunnarsson L, Bjerneld E J, Xu H, et al. Applied Physics Letters, 2001, 78(6): 802.
[39] Sun T, Gu F, Pu L C, et al. Materials Express, 2017, 7(5): 398.
[40] Liu F X, Song B X, Su G X, et al. Small, 2018: e1801146.
[41] Hou M J, Huang Y, Ma L W, et al. Nanoscale Research Letters, 2015, 10: 444.
[42] Tang H B, Meng G W, Huang Q, et al. Advanced Functional Materials, 2012, 22(1): 218.
[43] Xie W Y, He S X, Xia L P, et al. Analytical Methods, 2015, 7(5): 1676.
[44] Zhu C H, Meng G W, Huang Q, et al. Chemical Communications, 2011, 47(9): 2709.
[45] Quan Y N, Yao J C, Yang S, et al. Microchimica Acta, 2019, 186(8): 593.
[46] Lin P Y, Hsieh C W, Hsieh S. Scientific Reports, 2017, 7: 16698.
[47] He S, Liu X H, Zhang W, et al. Chemometrics and Intelligent Laboratory Systems, 2015, 146: 472.
[48] Chen X F, Liu M H, Yuan H C, et al. Applied Spectroscopy, 2018, 72(12): 1798.
[49] Albuquerque C D L, Nogueira R B, Poppi R J. Microchemical Journal, 2016, 128: 95.
[50] Jency D A, Umadevi M, Sathe G V. Journal of Raman Spectroscopy, 2015, 46(4): 377.
[51] Huang Z L, Meng G W, Huang Q, et al. Journal of Raman Spectroscopy, 2013, 44(2): 240.
[52] Chen B, Meng G W, Huang Q, et al. ACS Applied Materials & Interfaces, 2014, 6(18): 15667.
[53] Zhu C H, Meng G W, Huang Q, et al. Journal of Materials Chemistry, 2012, 22(5): 2271.
[54] YUAN Ya-xian, MA Jun-yin, WANG Mei, et al(袁亚仙,马君银,王 梅,等). Chemical Journal of Chinese Universities(高等学校化学学报), 2006, 27: 2140.
[55] Bantz K C, Haynes C L. Vibrational Spectroscopy, 2009, 50(1): 29.
[56] Zhang L, Zhou L H, Ji W J, et al. Food Analytical Methods, 2017, 10(6): 1940.
[57] Farber S, Green B S, Domb A J. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(20): 5534.
[58] Xue J Q, Li D W, Qu L L, et al. Analytica Chimica Acta, 2013, 777: 57.
[59] Wang Z W, Yan R X, Liao S W, et al. Applied Surface Science, 2018, 457: 323.
[60] Jing N, Lipert R J, Dawson G B, et al. Analytical Chemistry, 1999, 71: 4903.
[61] Wang R, Chon H, Lee S, et al. ACS Applied Materials & Interfaces, 2016, 8(17): 10665.
[62] Lin L K, Stanciu L A. Sensors and Actuators B: Chemical, 2018, 276: 222.
[63] Andrew D E, Szostak J W. Nature, 1900, 346(30): 818.
[64] ZHANG Gui-lan, ZHU Chao, HUANG Ya-fei, et al(张桂兰,朱 超,黄亚飞,等). Journal of Instrumental Analysis(分析测试学报), 2017, 36(3): 422.
[65] Pu H B, Huang Z B, Sun D W, et al. Water Air and Soil Pollution, 2019, 230(6): 124.
[66] Huang H L, Shi S, Gao X, et al. Biosensors and Bioelectronics, 2016, 79: 198.
[67] Huang K J, Liu Y J, Zhang J Z. Microchimica Acta, 2014, 182(1-2): 409.
[68] Lu Y L, Huang Q, Meng G W, et al. Analyst, 2014, 139(12): 3083.
[69] Sun K X, Huang Q, Meng G W, et al. ACS Applied Materials & Interfaces, 2016, 8(8): 5723.
[70] Liu S Y, Chen Y Q, Wang Y, et al. Analytical Chemistry, 2019, 91(12): 7639.
[71] Pu H B, Xie X H, Sun D W, et al. Talanta, 2019, 195: 419.
[72] Yao L, Li Y L, Cheng K W, et al. Microchimica Acta, 2019, 186(2): 52.
[73] Fu C C, Wang Y, Yang L Y, et al. Analytical Chemistry, 2015, 87(19): 9555. |
[1] |
OUYANG Zhou-xuan, MA Ying-jie, LI Dou-dou, LIU Yi. The Research of Polarized Energy Dispersive X-Ray Fluorescence for Measurement Trace Cadmium by Geant4 Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1064-1069. |
[2] |
WANG Zi-xiong, XU Da-peng*, ZHANG Yi-fan, LI Jia-jia. Research Progress of Surface-Enhanced Raman Scattering Detection Analyte Molecules[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 341-349. |
[3] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 470-477. |
[4] |
HUANG Hui1, 2, TIAN Yi2, ZHANG Meng-die1, 2, XU Tao-ran2, MU Da1*, CHEN Pei-pei2, 3*, CHU Wei-guo2, 3*. Design and Batchable Fabrication of High Performance 3D Nanostructure SERS Chips and Their Applications to Trace Mercury Ions Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3782-3790. |
[5] |
FU Xing-hu, WANG Zhen-xing, MA Shuang-yu, ZHAO Fei, LU Xin, FU Guang-wei, JIN Wa, BI Wei-hong. Preparation and Properties of Micro-Cavity Silver Modified Fiber SERS Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2800-2806. |
[6] |
LI Qing-yuan, LI Jing, WEI Xin, SUN Mei-xiu*. Performance Evaluation of a Portable Breath Isoprene Analyzer Based on Cavity Ringdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2415-2419. |
[7] |
GUI Bo1, 2, YANG Yu-dong1, ZHAO Qian1, 2, SHI Meng1, MAO Hai-yang1, 3*, WANG Wei-bing1, CHEN Da-peng1, 3. A SERS Substrate for On-Site Detection of Trace Pesticide Molecules Based on Parahydrophobic Nanostructures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2499-2504. |
[8] |
SUN Ning, CHEN Jun-fan, ZHANG Jie*, ZHU Yong. The Forming Mechanism of Surface Morphology of Nanostructures and Its Effect on Graphene Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1821-1827. |
[9] |
ZHANG Can, ZHANG Jie*, DOU Xin-yi, ZHU Yong. Connection of Absorption and Raman Enhancement Characteristics of Different Types of Ag Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1816-1820. |
[10] |
DOU Xin-yi, ZHANG Can, ZHANG Jie*. Effects of Process Parameters on Double Absorption Resonance Peaks of Au Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1446-1451. |
[11] |
ZHANG Lei, ZHANG Xia*, WENG Yi-jin, LIU Xiao. Preparation and Properties of Ag/PANI Multifunction Nanozymes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3399-3403. |
[12] |
TIAN Hui-yan1,LIU Yu1, HUANG Jiao-qi1, XIE Feng-xin1, HUANG Guo-rong1, LIAO Pu1, FU Wei-ling1, ZHANG Yang2*. Research Progress and Application of Surface-Enhanced Raman Scattering Technique in Nucleic Acid Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3021-3028. |
[13] |
TENG Yuan-jie, WEI Qi-zhen, LIU Wen-han, LIU Jiang-mei, NIE Yong-hui, LI Pan. Cy3-Labeled Aptamer Combined with Surface-Enhanced Raman Scattering Using for Specific Detection of Trace Acetamiprid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2462-2467. |
[14] |
XING Hao-jian, YIN Zeng-he, ZHANG Jie*, ZHU Yong. Theoretical Analysis and Experiment of Raman Enhancement of Graphene-Ordered Silver Nanopores[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2339-2344. |
[15] |
ZHAO Qian1,2, YANG Yu-dong1, GUI Bo1,2, MAO Hai-yang1,2,3*, LI Rui-rui1, CHEN Da-peng1,2,3. Surface-Enhanced Raman Scattering Transparent Devices Based on Nanocone Forests[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1168-1173. |
|
|
|
|