光谱学与光谱分析 |
|
|
|
|
|
The Study of Aluminium Diffuser Calibration in the UV |
LI Cong1,2,WANG Yong-mei1,ZHANG Zhong-mou1 |
1. Lab for Space Environment Exploration, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080, China 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract A bi-directional reflectance distribution function (BRDF) measurement setup in the ultraviolet spectral range was established. The BRDF of the aluminium diffusers at a given orientation was measured. The relative accuracy of the BRDF measurement is better than 2.5%. The hemispheric reflectance of the aluminium diffusers was measured in the wavelength range from 250 to 650 nm. It increases with the wavelength, and changes about 6% from 300 to 360 nm. It decreases with the time. Since the diffuser was made (about one year ago), from 250 to 300 nm, the peak decrease in the hemispheric reflectance can reach 2.6%, and the average decrease is 1.5%. From 300 to 360 nm, it has an average decrease of 0.9% decrease, and 0.8% when wavelength is longer than 360 nm.
|
Received: 2006-12-19
Accepted: 2007-03-22
|
|
Corresponding Authors:
LI Cong
E-mail: licongnc@hotmail.com
|
|
[1] Fegley A A, Flower W K. Metrologia, 1991, 28(3): 297. [2] Jaross G, Krueger A, Cebula R P, et al. J. Geophys. Res., 1995, 100: 2985. [3] Hahne A, Callies J, Lefebvre A, et al. ESA Journal-European Space Agency, 1994, 18: 119. [4] Hahne A, Lefebvre A, Callies J, et al. ESA Bulletin-European Space Agency, 1993, 73: 22. [5] Hahne A, Lefebvre A, Callies J, et al. ESA Bulletin-European Space Agency, 1995, 83: 41. [6] Hoekstra R, Olij C, Zoutman A E, et al. Proc. SPIE, 1997, 2957: 312. [7] Renotte E, Novi A, Labate D, et al. Proc. SPIE, 1997, 2957: 355. [8] Victor R Weidner, Jack J Hsia. NBS Measurement Sercices: Spectral Reflectanca, NIST Special Publication 250-8, 1987. [9] Nicodemus F E, Richmond J C, Hsia J J, et al. Geometrical Considerations and Nonenclature for Reflec Tance, NIST Monograph 160, 1977. [10] CHE Nian-zeng, YAN Da-yuan(车念曾, 闫达远). Radiometry and Photometry(辐射度学和光度学). Beijing: Beijing Institute of Technology Press(北京:北京理工大学出版社), 1990. [11] JIA Hui, LI Fu-tian, (贾 辉,李福田). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(1): 4. [12] Hanselman D, Littlefield B(Editor),Translated by ZHU Guang-feng(朱广峰译). Proficiency in Matlab 7(精通Matlab 7). Beijing: Tsinghua University Press(北京:清华大学出版社),2006. |
[1] |
CUI Zhen-zhen1, 2, MA Chao1, ZHANG Hao2*, ZHANG Hong-wei3, LIANG Hu-jun3, QIU Wen2. Absolute Radiometric Calibration of Aerial Multispectral Camera Based on Multi-Scale Tarps[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3571-3581. |
[2] |
LI Xin-xing1, 2, ZHANG Ying-gang1, MA Dian-kun1, TIAN Jian-jun3, ZHANG Bao-jun3, CHEN Jing4*. Review on the Application of Spectroscopy Technology in Food Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2333-2338. |
[3] |
TANG Xiao-xiao1, 2, LI Jian-yu1, 3, 4*, XU Gang1, 3, 4, SUN Feng-ying1, 3, 4, DAI Cong-ming1, 3, 4, WEI He-li1, 3, 4. Mixing Calibration Method for Spectral Sun-Photometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2536-2542. |
[4] |
DU Guo-jun, ZHANG Yu-gui, CUI Bo-lun, JIANG Cheng, OU Zong-yao. Spectral Calibration of Hyperspectral Monitor (HSM) on Carbonsat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1556-1562. |
[5] |
YE Zhi-peng1, 2, 3, ZHAO Shu-nan4, LI Xun-feng1, 2, 3*, HUAI Xiu-lan1, 2, 3. Study on Reflection Characteristics of Completely Oxidized DZ125[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 230-238. |
[6] |
LÜ Ru-lin1, HE Hong-yuan1*, JIA Zhen1, WANG Shu-yue1, CAI Neng-bin2, WANG Xiao-bin1. Application Progress of Spectral Detection Technology of Melamine
in Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 1999-2006. |
[7] |
WANG Jian-wei1, 2, LI Wei-yan1, SUN Jian-ying1, LI Bing1, CHEN Xin-wen1, TAN Zheng1, ZHAO Na1, LIU Yang-yang1, 3, LÜ Qun-bo1, 3*. Fast Spectral Calibration Method of Spectral Imager[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2013-2017. |
[8] |
LIU Li-xi, CHEN Lin, CHEN Zhi-li*, TANG Jin, PENG Wu-di, HU Tian-you, WANG Hao-wen. Research on the Radiation Characteristics of Low-Carbon Chemical Flame Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 62-67. |
[9] |
CHENG Liang-xiao1, 2, TAO Jin-hua1*, ZHOU Hai-jin3, YU Chao1, FAN Meng1, WANG Ya-peng4, WANG Zhi-bao5, CHEN Liang-fu1. Evaluations of Environmental Trace Gases Monitoring Instrument (EMI) Level 1 Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3881-3886. |
[10] |
TAN Yang, JIANG Qi-gang*, LIU Hua-xin, LIU Bin, GAO Xin, ZHANG Bo. Estimation of Organic Matter, Moisture, Total Iron and pH From Back Soil Based on Multi Scales SNV-CWT Transformation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3424-3430. |
[11] |
LI Xin-xing1, GUO Wei1, BAI Xue-bing1, YANG Ming-song2*. Review on the Application of Spectroscopy Technology in Aquatic Product Quality Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1343-1349. |
[12] |
GE Liang-quan, LI Fei*. Research Advances in In-Situ X-Ray Fluorescence Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 704-713. |
[13] |
LUO Wei, TIAN Peng, DONG Wen-tao, HUANG Yi-feng, LIU Xue-mei, ZHAN Bai-shao, ZHANG Hai-liang*. Detection of Pb Contents in Soil Using LIBS Coupled With Univariate Calibration Curve Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 886-891. |
[14] |
LIU Jia-qing1, 2, LI Zhi-zeng1, 4, LI Jing3*, LIU Lei1, 4, LIU Lei1, GUO Hong-long1, WANG Jian-guo1. Phase Characterizing and Processing in Fourier Transform Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3328-3335. |
[15] |
ZHANG Hao-dan1,SUN Xiao-lin1, 2*,WANG Xiao-qing1,WANG Hui-li3. Analyzing Errors due to Measurement Positions and Sampling Locations for In Situ Measurements of Soil Organic Matter Using Vis-NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3499-3507. |
|
|
|
|