|
|
|
|
|
|
Surface Plasmon Resonance Sensor Based on Bimetallic Layer Au/Ag/MXene/WS2/BP |
ZOU Dan-dan1, BAI Yu-jie1, 2, MA Si-fan1, ZHU Si-qiang1*, PAN Jian-bing3 |
1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
2. Tianjin Jintie Power Supply Co., Ltd.,Tianjin 300171, China
3. Electric Power Research Institute of State Grid Jiangxi Electric Power Company, Nanchang 330096, China
|
|
|
Abstract Salt content detection sensors are of great significance for the rapid and accurate detection of solution salt content, especially for monitoring the salt density of external insulation in power equipment at high altitude complex environments. However, the traditional method usually has the shortcomings of complex operation, long detection time, and low sensitivity, which makes it difficult to meet the needs of modern industrial production. To improve this problem, we propose a novel surface plasmon resonance (SPR) sensor that combines the advantages of bimetallic layers of gold (Au) and silver (Ag) with the unique properties of two-dimensional materials MXene, tungsten disulfide (WS2) and black phosphorus (BP), such as high electrical conductivity, hydrophilicity, excellent thermal stability, and adsorption capacity. By optimizing the structure of each layer of the sensor and comparing the sensitivity of resonance spectra of different metal structures of the sensor, the results show that the bimetallic layer (Au/Ag)/MXene/WS2/BP structure sensor has a sensitivity of up to 200°·RIU-1. The sensor has a stronger detection ability, so it can accurately and quickly detect the salt content of the solution and provide strong support for environmental protection, resource utilization, and safety in production.
|
Received: 2024-06-20
Accepted: 2024-12-13
|
|
Corresponding Authors:
ZHU Si-qiang
E-mail: zhusq617@ecjtu.edu.cn
|
|
[1] Rachana M, Charles I, Swarnakar S, et al. Optical Fiber Technology, 2022, 74: 103085.
[2] XU Meng-lei, GAO Yu, ZHU Lin, et al(徐梦蕾,高 宇,朱 琳,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(1): 320.
[3] LIU Xue-mei, WANG Xiao-lin, CHOU Zeng-feng, et al(刘雪梅,王晓琳,仇增凤,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(2): 511.
[4] Kretschmann E, Raether H. Zeitschrift für Naturforschung A, 1968, 23(12): 2135.
[5] Zhang Y, Wang L, Zhang N, et al. RSC Advances, 2018, 8(36): 19895.
[6] Lipatov A, Alhabeb M, Lukatskaya M R, et al. Advanced Electronic Materials, 2016, 2(12): 1600255.
[7] Srivastava A, Verma A, Das R, et al. Optik, 2020, 203: 163430.
[8] Xu Y, Ang Y S, Wu L, et al. Nanomaterials, 2019, 9(2): 165.
[9] Xu Y, Shi Z, Shi X, et al. Nanoscale, 2019, 11(31): 14491.
[10] Maurya J B, Prajapati Y K. Plasmonics, 2017, 12: 1121.
[11] Prajapati Y K, Srivastava A. Superlattices and Microstructures, 2019, 129: 152.
[12] Pal S, Verma A, Prajapati Y K, et al. Optical and Quantum Electronics, 2017, 49: 403.
[13] Wood J D, Wells S A, Jariwala D, et al. Nano Letters, 2014, 14(12): 6964.
[14] Maurya J B, Prajapati Y K, Raikwar S, et al. Optik, 2018, 160: 428.
[15] Wu L, Jia Y, Jiang L, et al. Journal of Lightwave Technology, 2017, 35(1): 82.
[16] QI Pan, MA Xiao, ZHANG Zi-bang, et al(齐 攀, 马 骁, 张子邦, 等). Laser and Optoelectronics Progress(激光与光电子学进展), 2015, 52(5): 052401.
[17] Wu L, You Q, Shan Y, et al. Sensors and Actuators B: Chemical, 2018, 277: 210.
|
[1] |
CHEN Ji-wen, CHEN Zuo-er*, ZHAO Ying*. A High-Sensitivity Full-Spectrum Spectrometer Based on a Cylindrical Lens Focusing System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 222-230. |
[2] |
YANG Rui1, CUI Jian-sheng1, 2*, MA Xiao-long1, 2, WANG He-yu1, LIU Da-xi1, 2, WANG Liu-bo1. Study on the Detection of Triazine Herbicides Atrazine, Prometryn and Terbumeton Biotoxicity by Methyl-Ethyl Vegetable Oil Sensitized Algae Chlorophyll Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1789-1800. |
[3] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
[4] |
ZHANG Rong1, 2, DUAN Ning1, 3, JIANG Lin-hua1, 3*, XU Fu-yuan3, JIN Wei3, LI Jian-hui1. Study on Optical Path Optimization for Direct Determination of
Spectrophotometry of High Concentration Hexavalent Chromium
Solution by Ultraviolet Visible Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1829-1837. |
[5] |
SI Gan-shang1, 2, LIU Jia-xiang1, LI Zhen-gang1, 2, NING Zhi-qiang1, 2, FANG Yong-hua1, 2*, CHENG Zhen1, 2, SI Bei-bei1, 2, YANG Chang-ping1, 2. Raman Signal Enhancement for Liquid Detection Using a New Sample Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 712-717. |
[6] |
ZHANG Liang1, ZHANG Ran2, CUI Li-li3, LI Tao1, GU Da-yong4, HE Jian-an2*, ZHANG Si-xiang1*. Rapid Modification of Surface Plasmon Resonance Sensor Chip by
Graphene Oxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 795-800. |
[7] |
XU Meng-lei1, 2, GAO Yu3, ZHU Lin1, HAN Xiao-xia1, ZHAO Bing1*. Improved Sensitivity of Localized Surface Plasmon Resonance Using Silver Nanoparticles for Indirect Glyphosate Detection Based on Ninhydrin Reaction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 320-323. |
[8] |
ZHANG Xue-fei1, DUAN Ning1, 2*, JIANG Lin-hua1, 2*, CHENG Wen2, YU Zhao-sheng3, LI Wei-dong2, ZHU Guang-bin4, XU Yan-li2. Study on Stability and Sensitivity of Deep Ultraviolet Spectrophotometry Detection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3802-3810. |
[9] |
ZHENG Yu-xia1, 2, TUERSUN Paerhatijiang1, 2*, ABULAITI Remilai1, 2, CHENG Long1, 2, MA Deng-pan1, 2. Retrieval of Polydisperse Au-Ag Alloy Nanospheres by Spectral Extinction Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3039-3045. |
[10] |
ZHANG Yan1, WANG Hui-le1, ZHAO Hui-fang1, LI Jing1, TONG Xin1, LIU Zhong2. Optimization of Corn Stalk Liquefaction Conditions Under Atmospheric Pressure and Analysis of Biofuel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2551-2556. |
[11] |
PENG Ren-miao1, 2, XU Peng-peng2, ZHAO Yi-mo2, BAO Li-jun1, LI Cheng2*. Identification of Two-Dimensional Material Nanosheets Based on Deep Neural Network and Hyperspectral Microscopy Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1965-1973. |
[12] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[13] |
LI Yan-yan1, 2, LUO Hai-jun1, 2*, LUO Xia1, 2, FAN Xin-yan1, 2, QIN Rui1, 2. Detection of Craniocerebral Hematoma by Array Scanning Sensitivity Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 392-398. |
[14] |
LI Ming1, 2, NI Long1, WANG Meng1, 2*, ZHU Zhong-xu1, YUAN Chuan-jun1, 2, WU Jian3*. Research Progress on Evaluating the Effects of Nanomaterial-Based Development of Latent Fingerprints[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2670-2680. |
[15] |
LIU Xue-mei, WANG Xiao-lin, QIU Zeng-feng, WANG Ya-dong, ZHANG Bin, XU Chao*, YIN Hong-zong*. Surface Plasmon Resonance Sensing Technology is Applied to Small Molecule Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 511-516. |
|
|
|
|