|
|
|
|
|
|
LIBS Quantitative Analysis of Martian Analogues Library (MAL) |
LIU Chang-qing, LING Zong-cheng* |
Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Technology, Institute of Space Sciences, Shandong University, Weihai 264209, China
|
|
|
Abstract Laser-induced breakdown spectroscopy (LIBS) is a valuable technique for elemental analysis from a laser-induced plasma. The Zhurong rover in the Tianwen-1 Mars exploration mission carries a payload named Mars Surface Composition Detector (MarSCoDe), which can obtain geochemical compositions on Mars. However, the interpretation of MarSCoDe-LIBS spectra will be affected by the complex environment and rock types. With an intent to acquire accurate chemical compositions on Mars using MarSCoDe-LIBS spectra, this work evaluates the performance of several algorithms using the independent third-party LIBS spectral library. This work uses 351 Martian Analogues Library (MAL) to build the LIBS spectral library in a simulated Martian environment. Several models are built based on the LIBS spectra and chemical compositions using nine different algorithms, including machine learning, integrated learning, and deep learning, to derive the major elements (SiO2, TiO2, Al2O3, Fe2O3T, MgO, CaO, Na2O, and K2O). The parameters of these models are confirmed using the cross-validation method, and the performance of these models is evaluated using the RMSE values of the test set. The training set and test set for most models have similar RMSE values except for the ordinary least square method, suggesting no obvious over fitting for these models. In addition, the MLP and GBR models perform better for major elements. Moreover, the RMSE values of the models are similar to those of the published models for ChemCam and SuperCam, suggesting these models have a good performance and can acquire accurate chemical compositions of unknown targets based on their LIBS spectra. This work is valuable for building models suitable for interpreting MarSCoDe-LIBS spectra acquired on Mars.
|
Received: 2023-12-28
Accepted: 2024-06-26
|
|
Corresponding Authors:
LING Zong-cheng
E-mail: zcling@sdu.edu.cn
|
|
[1] Fiddler M N, Begashaw I, Mickens M A, et al. Sensors, 2009, 9(12): 10447.
[2] Musazzi S, Perini U. Laser-Induced Breakdown Spectroscopy. Springer Heidelberg New York Dordrecht London: Springer Series in Optical Sciences, 2014.
[3] Rai V, Thakur S N. Physics and Dynamics of Plasma in Laser-Induced Breakdown Spectroscopy. Laser-Induced Breakdown Spectroscopy. City: Elsevier, 2020: 71.
[4] Wiens R C, Maurice S, Barraclough B, et al. Space Science Reviews, 2012, 170(1): 167.
[5] Maurice S, Wiens R, Saccoccio M, et al. Space Science Reviews, 2012, 170(1-4): 95.
[6] Cousin A, Sautter V, Payre V, et al. Icarus, 2017, 288: 265.
[7] Cousin A, Meslin P Y, Wiens R C, et al. Icarus, 2015, 249: 22.
[8] Meslin P-Y, Gasnault O, Forni O, et al. Science, 2013, 341(6153): 1238670.
[9] Maurice S, Clegg S M, Wiens R C, et al. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 863.
[10] Nachon M, Clegg S M, Mangold N, et al. Journal of Geophysical Research-Planets, 2014, 119(9): 1991.
[11] L'haridon J, Mangold N, Meslin P-Y, et al. Icarus, 2018, 311: 69.
[12] Lasue J, Clegg S M, Forni O, et al. Journal of Geophysical Research-Planets, 2016, 121(3): 338.
[13] Gasda P J, Anderson R B, Cousin A, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 181: 106223.
[14] Maurice S, Wiens R C, Bernardi P, et al. Space Science Reviews, 2021, 217(3): 47.
[15] Wiens R C, Maurice S, Robinson S H, et al. Space Science Reviews, 2021, 217(1): 4.
[16] Wiens R C, Udry A, Beyssac O, et al. Science Advances, 2022, 8(34): doi: 10.1126/sciadv.abo3399.
[17] Clavé E, Benzerara K, Meslin P Y, et al. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007463.
[18] Beyssac O, Forni O, Cousin A, et al. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007638.
[19] Beck P, Forni O, Dehouck E, et al. Secondary Mineralogy of Jezero Delta Rocks from Hydrogen and Carbon Emission Lines in Supercam Libs Data. 54th Lunar and Planetary Science Conference,2023. 54: 1241.
[20] Zou Y, Zhu Y, Bai Y, et al. Advances in Space Research, 2021, 67(2): 812.
[21] Xu W, Liu X, Yan Z, et al. Space Science Reviews, 2021, 217(5): 64.
[22] Liu C, Ling Z, Wu Z, et al. Communications Earth & Environment, 2022, 3(1): 280.
[23] Zhao Y-Y S, Yu J, Wei G, et al. National Science Review, 2023, 10(6): https:/doi.org/10.1093/nsr/nwad056.
[24] Ready J. Effects of High-Power Laser Radiation. Elsevier, 2012.
[25] Tognoni E, Palleschi V, Corsi M, et al. From Sample to Signal in Laser-Induced Breakdown Spectroscopy: a Complex Route to Quantitative Analysis. Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications. City: Cambridge Univ. Press, 2006: 122.
[26] Mcmillan N J, Mcmanus C E, Harmon R S, et al. Analytical and Bioanalytical Chemistry, 2006, 385(2): 263.
[27] Rauschenbach I, Lazic V, Pavlov S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1205.
[28] Rapin W, Bousquet B, Lasue J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 137: 13.
[29] Sallé B, Lacour J-L, Mauchien P, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(3): 301.
[30] Cousin A, Sautter V, Fabre C, et al. Journal of Geophysical Research: Planets, 2012, 117(E10): E10002.
[31] Trainer M G, Wong M H, Mcconnochie T H, et al. Journal of Geophysical Research: Planets, 2019, 124(11): 3000.
[32] Davy R, Davis J A, Taylor P A, et al. Journal of Geophysical Research: Planets, 2010, 115(E3): E00E13.
[33] Cousin A, Forni A, Maurice S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(11-12): 805.
[34] Ehlmann B L, Edwards C S. Annual Review of Earth and Planetary Sciences, 2014, 42: 291.
[35] Pla-Garcia J, Rafkin S C, Kahre M, et al. Icarus, 2016, 280: 103.
[36] Wiens R C, Maurice S, Lasue J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 1.
[37] Anderson R B, Clegg S M, Frydenvang J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 129: 49.
[38] Clegg S M, Wiens R C, Anderson R, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 129: 64.
[39] Anderson R B, Forni O, Cousin A, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106347.
[40] Liu C, Wu Z, Fu X, et al. Remote Sensing, 2022, 14(12): 2937.
[41] Shandong University, School of Space Science and Physics, Zongcheng Ling, Changqing Liu(山东大学,空间科学与物理学院,凌宗成,刘长卿). Martian LIBS spectral Database. (火星LIBS光谱数据库). V1. 0. National Space Science Data Center(国家空间科学数据中心). 10.12176/03.70.00001-V01, 2023-11-09.
[42] Liu C, Ling Z, Zhang J, et al. Remote Sensing, 2021, 13(23): 4773.
[43] Noll R. Laser-Induced Breakdown Spectroscopy. Laser-Induced Breakdown Spectroscopy. City: Springer, 2012: 7.
[44] Kashiwakura S, Wagatsuma K J I I. ISIJ International, 2020, 60(6): 1245.
[45] Fang Z, Tao Y, Wang W, et al. Journal of Raman Spectroscopy, 2018, 49(12): 1972.
[46] Huang J, Dong M, Lu S, et al. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 720.
[47] Erler A, Riebe D, Beitz T, et al. Sensors, 2020, 20(2): 418.
[48] Guodong W, Lanxiang S, Wei W, et al. Plasma Science and Technology, 2020, 22(7): 074002.
[49] Wu X, Shin S, Gondhalekar C, et al. Foods, 2023, 12(2): 402.
[50] Lu H, Hu X, Ma L, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 164: 105753.
[51] Mourched B, Abdallah M, Hoxha M, et al. Sustainability, 2023, 15(14): 11468.
|
[1] |
LI Xin-yi1, KONG De-ming1*, NING Xiao-dong2, CUI Yao-yao3. Research on Emulsified Oil Spill Detection Methods Based on
Mid-Infrared Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 631-636. |
[2] |
CHEN Jin-ni, TIAN Gu-feng*, LI Yun-hong, ZHU Yao-lin, CHEN Xin, MEN Yu-le, WEI Xiao-shuang. Near-Infrared Spectral Prediction Model for Cashmere and Wool Based on Two-Way Multiscale Convolution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 678-684. |
[3] |
NI Qin-ru1, OU Quan-hong1*, SHI You-ming2, LIU Chao3, ZUO Ye-hao1, ZHI Zhao-xing1, REN Xian-pei4, LIU Gang1. Diagnosis of Lung Cancer by Human Serum Raman Spectroscopy
Combined With Six Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 685-691. |
[4] |
XIAO Zhong-liang, YUAN Rong-yao, FU Zhuang, LIU Cheng, YIN Bi-lu, XIAO Min-zhi, ZHAO Ting-ting, KUANG Yin-jie, SONG Liu-bin*. Study on the Aging Behavior of Transformer Oil Based on Machine
Learning and Infrared Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 434-442. |
[5] |
HAN Yan1, 5, DU Zeng-feng1, TIAN Ye3, LU Yuan3, SHI Xue-fa2, 4, LUAN Zhen-dong1, 5, YU Miao4, ZHANG Xin1, 2, 5*. Study on the Leaching and LIBS Spectral Detection Method of Rare Earth Elements in Deep-Sea Sediments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 469-475. |
[6] |
LI Wei-qi1, WANG Yi-fan1, YU Yue1, LIU Jie1, 2, 3*. Establishment and Optimization of the Hyperspectral Detection Model for Soluble Solids Content in Fortunella Margarita[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 492-500. |
[7] |
ZHANG Ran1, 2, JIN Wei1, 2, MU Ying1, YU Bing-wen2, BAI Yi-wen2, SHAO Yi-bo1, 2, PING Jin-liang3*, SONG Peng-tao3, HE Xiang-yi3, LIU Fei3, FU Lin-lin3. Transformer-Based Method for Segmentation of Gastric Cancer
Microscopic Hyperspectral Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 551-557. |
[8] |
LIU Zi-han1, LIU Yan2, HAN Lei1, SHAN Yuan1, LU Zheng1, GAO Qiang1*, LI Shuai-yao2*, LI Bo1. Mixture Fraction Measurements of Hydrogen/Air Flames Using Nanosecond LIBS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 24-29. |
[9] |
JU Lei1, YU Jie1, WU Yan-miao2, LI Li2, LU Tian3, DING Ya-ping2, SHU Ru-xin1*. Comparative Study of Hyperspectral Preprocessing Methods and Multiple Models in Classification and Discrimination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 125-132. |
[10] |
XU Yang1, MAO Yi-lin1, LI He1, WANG Yu1, WANG Shuang-shuang2, QIAN Wen-jun1, DING Zhao-tang2*, FAN Kai1*. Multispectral and Hyperspectral Prediction Models of REC, SPAD and MDA in Overwintered Tea Plant[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 256-263. |
[11] |
SHAO Yan1, 2, 3, LÜ Jin-guang1, 2*, LIN Jing-jun4, ZHENG Kai-feng1, 2, ZHAO Bai-xuan1, 2, ZHAO Ying-ze1, 2, CHEN Yu-peng1, 2, QIN Yu-xin1, 2, WANG Wei-biao1, 2, LIN Xiao-mei5, LIANG Jing-qiu1, 2*. Determination of Metal Elements in Lubricant Oil by Beeswax Sample Preparation Assisted Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3321-3326. |
[12] |
WU Zhuo1, 2, SU Xiao-hui3, FAN Bo-wen4, ZHU Hui-hui1, 2, ZHANG Yu-bo1, 2, FANG Bin3, WANG Yi-fan1, 2, LÜ Tao1, 2*. Different Feature Selection Methods Combined With Laser-Induced Breakdown Spectroscopy Were Used to Quantify the Contents of Nickel, Titanium and Chromium in Stainless Steel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3339-3346. |
[13] |
CAO Wang1, MAO Ya-chun1*, WEN Jie1, DING Rui-bo1, XU Meng-yuan1, FU Yan-hua2. Study on Inversion Method of Anshan-Type Iron Ore Grade Based on
Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3494-3503. |
[14] |
WANG Sa1, 2, QU Liang1, 2*, ZHANG Li-fu3, GAO Yu3, LI Guang-hua1, 2, CHANG Jing-jing1, 2. Research on the Inverse Model of Paper Viscosity Based on Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3524-3533. |
[15] |
HUANG Lin-feng1, JIANG Xue-song1, 2*, JIA Zhi-cheng1, ZHOU Hong-ping1, 2, ZHOU Lei1, RONG Zi-fan1. Deep Learning-Based Monitoring of Nutrient Content in Pear Trees[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3543-3552. |
|
|
|
|