|
|
|
|
|
|
Deep Learning-Based Monitoring of Nutrient Content in Pear Trees |
HUANG Lin-feng1, JIANG Xue-song1, 2*, JIA Zhi-cheng1, ZHOU Hong-ping1, 2, ZHOU Lei1, RONG Zi-fan1 |
1. Mechanical and Electronic Engineering College, Nanjing Forestry University, Nanjing 210037, China
2. Collaborative Innovation Center for Efficient Processing and Utilization of Forestry Resources,Nanjing 210037, China
|
|
|
Abstract To achieve wide-scale, accurate, and timely monitoring of pear nutrients during the growth and fruiting periods of pear trees and to further provide protection and adjustment strategies for pear fertilization management and pear fruit quality improvement, we used the ASD FieldSpec3 hyperspectral spectroscopy system to monitor the nutrient content of pear trees. The ASD FieldSpec3 hyperspectrometer was used to obtain leaf hyperspectral data during the fruit expansion and ripening periods of pear trees and to collect information on the leaf nitrogen, phosphorus, and potassium content. The effects of spectral preprocessing methods such as raw reflectance, first-order derivative transformation (FD), convolutional smoothing algorithm (SG), and standard normal variable transformation (SNV) on the fitting effect of the hyperspectral reflectance monitoring model were comparatively analyzed through the raw spectral curves. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and successive projection algorithm (SPA) are then used to select the characteristic bands of hyperspectral data. After that, partial least squares regression (PLSR), support vector regression (SVR), random forest (RF), gradient boosted tree (GBDT), convolutional neural network (CNN), and deep forest (DF) algorithms were used to establish monitoring models based on the edge bands to screen the optimal hyperspectral monitoring models for the three nutrient elements, nitrogen, phosphorus, and potassium, in pear trees. The optimal modeling combination of nitrogen was the DF regression model of PCA eigenbands pre-processed by SG-SNV (R2=0.928 3, RMSE=0.238 1 g·kg-1). The optimal modeling combination of phosphorus was the GBDT regression model of SPA eigenbands pre-processed by SG-SNV (R2=0.936 7, RMSE=0.043 1 g·kg-1). The best modeling combination for potassium was the DF regression model (R2=0.954 4, RMSE=0.276 7 g·kg-1) for the SG-SNV preprocessed PCA feature band. The monitoring model based on hyperspectral edge bands was well fitted (R2>0.9), which can realize the accurate monitoring of nitrogen, phosphorus, and potassium content in pear fruit during expansion and ripening.
|
Received: 2024-03-05
Accepted: 2024-06-18
|
|
Corresponding Authors:
JIANG Xue-song
E-mail: xsjiang@njfu.edu.cn
|
|
[1] Liu Y A, Bai M J, Li Y N, et al. Agronomy-Basel, 2023, 13(3): 867.
[2] Cui Y, Wang H, Zhu H F. Journal of Applied Remote Sensing, 2019, 13(1): 16525.
[3] Li T S, Zhu Z, Cui J, et al. International Journal of Remote Sensing, 2021, 42(12): 4672.
[4] Chen G D, Li Y, Jin C, et al. Frontiers in Plant Science, 2021, 12: 696045.
[5] de Andrade F H A, Pereira W E, Maia J M, et al. Journal of Plant Growth Regulation, 2022, 41(3): 1229.
[6] Sete P B, Ciotta M N, Nava G, et al. Agronomy Journal, 2020, 112(4): 3065.
[7] Zhang H C, Wang L, Jin X L, et al. The Crop Journal, 2023, 11(5): 1303.
[8] Wang J, Shi X J, Xu Y C, et al. Remote Sensing, 2021, 13(5): 927.
[9] Wang J, Xue W, Shi X J, et al. Sensors, 2021, 21(18): 6260.
[10] XU Tong-yu, JIN Zhong-yu, GUO Zhong-hui, et al(许童羽, 金忠煜, 郭忠辉, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2022, 38(10): 148.
[11] Chen S M, Ma L H, Hu T T, et al. International Journal of Agricultural and Biological Engineering, 2021, 14(3): 181.
[12] Sabzi S, Pourdarbani R, Rohban M H, et al. Chemometrics and Intelligent Laboratory Systems, 2021, 217: 104404.
[13] Azadnia R, Rajabipour A, Jamshidi B, et al. Computers and Electronics in Agriculture, 2023, 207: 107746.
[14] Chen G Y. Journal of Electrical Engineering (Slovak University of Technology), 2021, 72(1): 40.
[15] Li Y R, Xia H F, Liu Y, et al. Forests, 2023, 14(5): 883.
[16] Guo Z M, Wang M M, Wu J Z, et al. Food Chemistry, 2019, 286: 282.
[17] Sudu B, Rong G Z, Guga S, et al. Remote Sensing, 2022, 14(21): 5407.
[18] Zhang L, Sun H, Rao Z H, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 229: 117973.
[19] Ouyang Q, Wang L, Park B, et al. Food Chemistry, 2021, 350: 129141.
[20] Mao Y L, Li H, Wang Y, et al. Foods, 2022, 11(16): 2537. |
[1] |
CHEN Cheng1, YAN Bing1, YIN Zuo-wei1*, CAO Wei-yu2, WANG Wen-jing1. Study on the Spectrum and Visualization of “Trapiche” Tourmaline Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3429-3434. |
[2] |
WANG Jing1, MA Ling1, MA Si-yan1, MA Yan1, ZHANG Yi-yang1, WU Long-guo1, 2*. Nondestructive Detection of Catalase Activity in Melon Leaves By
Fluorescence Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3455-3462. |
[3] |
XU Jing-yu1, BAO Ni-sha1, 2*, LANG Jie-shuang3, LIU Shan-jun1, 2, MAO Ya-chun1, 2, HE Li-ming1, 2. A Hyperspectral Recognition Method for Camouflaged Targets Based on Background Dictionary Sparse Representation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3534-3542. |
[4] |
GAO Yu1, 2, SUN Xue-jian1, 3*, LI Guang-hua3, 4, ZHANG Li-fu1, 3, QU Liang3, 4, ZHANG Dong-hui5. Hidden Handwriting Recognition of Calligraphy Artifact Based on
Hyperspectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3485-3493. |
[5] |
CAO Wang1, MAO Ya-chun1*, WEN Jie1, DING Rui-bo1, XU Meng-yuan1, FU Yan-hua2. Study on Inversion Method of Anshan-Type Iron Ore Grade Based on
Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3494-3503. |
[6] |
WANG Sa1, 2, QU Liang1, 2*, ZHANG Li-fu3, GAO Yu3, LI Guang-hua1, 2, CHANG Jing-jing1, 2. Research on the Inverse Model of Paper Viscosity Based on Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3524-3533. |
[7] |
ZHANG Ai-wu1, 2, 3, LI Meng-nan1, 2, 3, SHI Jian-cong1, 2, 3, PANG Hai-yang1, 2, 3. Hyperspectral Inversion Method for Natural Grassland Canopy SPAD Value Based on Scaling Up of Green Coverage Rate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3513-3523. |
[8] |
LIU Qing-song1, DU Wen-jing1, LUO Bo2, LI Kai-ge1, DAN You-quan1*, XU Luo-peng1, YANG Xiu-feng2, TANG Shen-lan1. Near Infrared Hyperspectral Identification of Surface Damage on Aircraft Wings[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3069-3074. |
[9] |
PENG Bo1, WEN Zhao-yang1, WEN Qi1, LIU Ting-ting1, 2*, XING Shuai3, WU Teng-fei3, YAN Ming1, 2*. Research of Mid-Infrared Time-Stretch Frequency Upconversion
Hyperspectral Imaging System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3037-3042. |
[10] |
WENG Shi-zhuang, PAN Mei-jing, TAN Yu-jian, ZHANG Qiao-qiao, ZHENG Ling*. Prediction of Soluble Solid Content in Apple Using Image Spectral Super-Resolution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3095-3100. |
[11] |
LI Bin1, 2, LU Ying-jun2, SU Cheng-tao2, LIU Yan-de1, 2. Detection of Different Levels of Damage in Gong Pears Based on
Reflectance/Absorbance/Kubelka-Munk Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3101-3108. |
[12] |
JIA Tong-hua1, CHENG Guang-xu1*, YANG Jia-cong1, CHEN Sheng2, WANG Hai-rong3, HU Hai-jun1. Research of Chlorine Concentration Inversion Method Based on 1D-CNN Using Ultraviolet Spectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3109-3119. |
[13] |
SHI Rui1, 2, ZHANG Han2, WANG Cheng1, 2, KANG Kai2, LUO Bin1, 2*. Detection of Wheat Single Seed Vigor Using Hyperspectral Imaging and Spectrum Fusion Strategy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3206-3212. |
[14] |
DENG Zhi-gang1, 2, ZHAO Hong-mei2*, ZHA Wen-xian2, TANG Lin-ling2, TIAN Ye2. A Hyperspectral Vegetation Feature Band Selection Based on Quantum
Genetic Spectral Angle Mapper Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3258-3265. |
[15] |
ZHONG Qing1, Mamattursun EZIZ1, 2*, Mireguli AINIWAER1, 2, HOU Mao-rui3, LI Hao-ran4. Hyperspectral Inversion of Cobalt Content in Urban Soils[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3266-3272. |
|
|
|
|