|
|
|
|
|
|
Nondestructive Detection of Catalase Activity in Melon Leaves By
Fluorescence Hyperspectral Imagery |
WANG Jing1, MA Ling1, MA Si-yan1, MA Yan1, ZHANG Yi-yang1, WU Long-guo1, 2* |
1. College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
2. Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
|
|
|
Abstract To achieve timely monitoring of plant growth, rapid detection of differences in the distribution of catalase activity in melon leaves under different light intensities is essential. In this study, melon leaves were treated with different light intensities. Then the leaves were scanned using fluorescence hyperspectral imaging to extract the average spectral reflectance of 300 leaf samples, and the raw spectra were pre-processed and optimised by four pre-processing methods. Using interval Variable Iterative Space Shrinkage Approach (iVISSA), Competitive adaptive reweighted sampling (CARS), Genetic algorithm partial least squares algorithm(GAPLS), Iterative retained Information Variable(IRIV), and Variables Combination Population Analysis(VCPA) were used to extract the feature wavelengths. The partial-least-squares regression (PLSR) model screened the optimal feature wavelengths. Based on the preferred feature wavelengths, Principal component regression (PCR) model, Multiple linear regression (MLR) model, Convolutional Neural Network (CNN) model, Least Squares Support Vector Machine (LSSVM) model, and the results show that Baseline-IRIV-MLR model has the highest recognition accuracy, with an accuracy of 0.852 in both training and prediction sets. The results of this study provide a theoretical basis for applying fluorescence hyperspectral imaging technology in the quality evaluation of melon crops and technical support for the development of precision agriculture.
|
Received: 2023-10-27
Accepted: 2024-02-25
|
|
Corresponding Authors:
WU Long-guo
E-mail: wlg@nxu.edu.cn
|
|
[1] KANG Li-yun, LI Xiao-hui, GAO Ning-ning, et al(康利允, 李晓慧, 高宁宁,等). Southwest China Journal of Agricultural Sciences(西南农业学报), 2023, 36(6): 1271.
[2] Hao X, Jia J D, Mi J Q, et al. Plant Growth Regulation, 2020. 92(2): 319.
[3] WANG Xing-xing, CHEN Gang, CAO Guang-qiu, et al(汪星星, 陈 钢, 曹光球,等). Journal of Gansu Agricultural University(甘肃农业大学学报), 2022, 57(4): 137.
[4] LIU Cong, DENG Yu-hong, LIU Xuan-ming, et al(刘 聪, 邓宇宏, 刘选明,等). Life Science Research(生命科学研究), 2023, 27(2): 128.
[5] Siregar T H, Ahmad U, Sutrisno, et al. IOP Conference Series: Earth and Environmental Science, 2018, 147: 012006.
[6] WANG Yi,YUN Pan,JIANG Wei,et al(王 溢, 兖 攀, 姜 维,等). Molecular Plant Breeding(分子植种育种), 2022. https://kns.cnki.net/kcms/detail/46.1068.S.20221107.1525.002.html.
[7] CAI Qing-sheng(蔡庆生). Plant Physiology Experiment(植物生理学实验). Beijing: China Agricultural University Press(北京: 中国农业大学出版社), 2013. 101.
[8] FAN Qing,LI Cheng,LI Ming,et al(范 青, 李 程, 李 明,等). Food Science(食品科学), 2023, 44(8): 238.
[9] GAO Yun-fei,FU Lin-yu,ZHAI Jun,et al(高云飞, 付霖宇, 瞿 军,等). Electronics Optics & Control(电光与控制), 2019, 26(6): 18.
[10] HAO Jie,DONG Fu-jia,WANG Song-lei,et al(郝 婕, 董福佳, 王松磊,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(12): 3789.
[11] PU Hong-mei,LI Hong,WANG Hai-dan,et al(普红梅, 李 宏, 王海丹,等). Food Science and Technology(食品科技), 2021, 46(12): 281.
[12] Frías-Moreno M N, Parra-Quezada R A, Gonzalez-Agrilar G, et al. Conventional Fertilization Foods, 2021,10(5): 953.
[13] ZOU Jin-ping,WEI Xuan(邹金平, 魏 萱). Fujian Agricultural Science and Technology(福建农业科技), 2022, 53(2): 1.
[14] Zheng K, Feng T, Zhang W, et al. Chemometrics and Intelligent Laboratory Systems, 2019, 191: 109.
[15] GUO Yang,SHI Yong,GUO Jun-xian,et al(郭 阳, 史 勇, 郭俊先,等). Food and Fermentation Industry(食品与发酵工业), 2022, 48(2): 248.
[16] YANG Huan,LUO Bin,ZHANG Han,et al(杨 欢, 罗 斌, 张 晗,等). Journal of Jiangsu University(江苏大学学报), 2023, 44(2): 159.
[17] NIE Xiao-jun,HONG Wen-wen, Gill Ammara,et al(聂小军, 洪雯雯, Gill Ammara,等). Journal of Henan Polytechnic University(Natural Science)[河南理工大学学报(自然科学版)],2024, 43(3): 91.
[18] WU Li-dong,XIA Jin-an,ZHU Yuan-hong,et al(吴立东, 夏金安, 朱元宏,等). Shanghai Agricultural Science and Technology(上海农业科技), 2023, (5): 31.
[19] YUAN Hua-ling,QI Lu-lu,WANG Wen-juan,et al(袁华玲, 齐璐璐, 王文娟, 等). Anhui Agricultural Science Bulletin(安徽农学通报), 2022, 28(5): 51.
[20] LIANG Yong-fu,WANG Kang-cai,XUE Qi,et al(梁永富, 王康才, 薛 启,等). Journal of Nanjing Agricultural University(南京农业大学学报), 2018, 41(5): 839.
[21] YU De-ling,WANG Chang-liu(于德玲, 王昌留). Chinese Journal of Histochemistry and Cytochemistry(中国组织化学与细胞化学杂志), 2016, 25(2): 189.
[22] CHENG Jie-hong,CHEN Zheng-guang(程介虹, 陈争光). Chinese Journal of Analytical Chemistry(分析化学), 2021, 49(8): 1402.
|
[1] |
HAO Jie, DONG Fu-jia, WANG Song-lei*, LI Ya-lei, CUI Jia-rui, LIU Si-jia, LÜ Yu. Rapid Detection of Pesticide Residues on Navel Oranges by Fluorescence Hyperspectral Imaging Technology Combined With Characteristic Wavelength Selection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3789-3796. |
[2] |
WANG Yi-run1, FANG Qing1, HU Tao-ying1, LIU Ying1,2* . Spectroscopic and Molecular Docking Study on Specific Binding and Inhibition of Isoniazid to Human Serum Albumin and Catalase[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3789-3795. |
[3] |
ZHAO Yun1, ZHANG Chu2, LIU Fei2, KONG Wen-wen2, HE Yong2* . Application of Visible/Near-Infrared Spectroscopy to the Determination of Catalase and Peroxidase Content in Barley Leaves [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2382-2386. |
[4] |
YE Fa-bing1, 2, DONG Yuan-yan1*, ZHOU Peng2, MO Xiao-man2, HU Xian-wen1 . Study on Interaction between Sulfonylurea Herbicides and Catalase by Fluorescence Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(09): 1685-1687. |
|
|
|
|