|
|
|
|
|
|
Hyperspectral Inversion Method for Natural Grassland Canopy SPAD Value Based on Scaling Up of Green Coverage Rate |
ZHANG Ai-wu1, 2, 3, LI Meng-nan1, 2, 3, SHI Jian-cong1, 2, 3, PANG Hai-yang1, 2, 3 |
1. Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing 100048, China
2. Engineering Research Center of Space Information Technology, Ministry of Education, Capital Normal University, Beijing 100048, China
3. Center for Geographic Environment Research and Education, Capital Normal University, Beijing 100048, China
|
|
|
Abstract Chlorophyll is a crucial indicator for assessing grasslands' photosynthetic capacity and physiological condition.With its rich spectral information, hyperspectral remote sensing has become an important means for non-invasively estimating chlorophyll content in grasslands. However, there is a scale mismatch between the canopy hyperspectral data and the measured leaf chlorophyll values, leading to hyperspectral chlorophyll retrieval's low accuracy. Therefore, this paper proposes a hyperspectral retrieval method for natural grassland Canopy Chlorophyll based on the green cover rate. The typical natural grassland in Hulunbuir, Inner Mongolia, was selected as the research object. The measured leaf chlorophyll relative content values were obtained by ASD hyperspectral spectrometer, SPAD chlorophyll meter, and mobile phone digital photos.The results indicate that the correlation between vegetation indices and SPAD ranges from -0.74 to 0.76, which is generally higher than the average correlation of SPAD pushed up from -0.63 to 0.50. Green cover media pushed the measured values of leaf chlorophyll relative content to the sample canopy scale. First derivative spectra and 42 common chlorophyll spectral indices were used to construct a hyperspectral retrieval model (SPAD) of natural grassland Canopy Chlorophyll based on green cover rate_ cover. The single variable optimal grassland Canopy Chlorophyll retrieval modelR2=0.689, RMSE=2.714, RPD=1.752; The best regression model of grassland Canopy Chlorophyll wasR2=0.833, RMSE=2.019, RPD=2.354. The results show that the hyperspectral retrieval accuracy of chlorophyll content in natural grassland canopy can be effectively improved by extrapolating the measured value of chlorophyll content in grassland leaves to the canopy scale based on the green cover rate.
|
Received: 2023-11-11
Accepted: 2024-04-07
|
|
|
[1] LIU Wei,SUN Hai-xia,YANG Xiao-bo,et al(刘 炜,孙海霞,杨晓波,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2020,40(7):2200.
[2] Cao Z,Ma R,Duan H,et al. Remote Sensing of Environment,2020,248:111974.
[3] GAO Jin-long,LIU Jie,YIN Jian-peng,et al(高金龙,刘 洁,殷建鹏,等). Acta Prataculturae Sinica(草业学报),2020,29(2):172.
[4] ZHENG Zhu-bin,ZHANG Run-fei,LI Jian-zhong,et al(郑著彬,张润飞,李建忠,等). National Remote Sensing Bulletin(遥感学报),2022,26(11):2162.
[5] GU Feng,DING Jian-li,GE Xiang-yu,et al(顾 峰,丁建丽,葛翔宇,等). Arid Zone Research(干旱区研究),2019,36(4):924.
[6] Clevers J G P W,Gitelson A A. International Journal of Applied Earth Observation and Geoinformation,2013,23:344.
[7] Verrelst J, Munoz J, Alonso L,et al. Remote Sensing of Environment,2012,118:127.
[8] Zarco-Tejada P J,Hornero A,Beck P S A,et al. Remote Sensing of Environment,2019,223:320.
[9] WU Jian,HOU Lan-gong,WANG Dong(吴 见,侯兰功,王 栋). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2014,30(6):116.
[10] YUAN Jin-guo,NIU Zheng(袁金国,牛 铮). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2007,23(4):172.
[11] YAO Fu-qi,ZHANG Zhen-hua,YANG Run-ya,et al(姚付启,张振华,杨润亚,等). Science of Surveying and Mapping(测绘科学),2010,35(1):109.
[12] Main R, Cho M A, Mathieu R,et al. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(6):751.
[13] CHEN Lan,CHANG Qing-rui,GAO Yi-fan, et al(陈 澜,常庆瑞,高一帆,等). Journal of Northwest A&F University (Natural Science Edition)[西北农林科技大学学报(自然科学版)],2020,48(6):79.
[14] Sid'ko A F,Botvich I Yu,Pisman T I,et al. Field Crops Research,2017,207:24.
[15] DENG Chao,CHEN Zhi-biao,CHEN Hai-bin,et al(邓 超,陈志彪,陈海滨,等). Geo-Information Science(地球信息科学学报),2019,21(6):948.
[16] CHEN Peng,FENG Hai-kuan,LI Chang-chun,et al(陈 鹏,冯海宽,李长春,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2019,35(11):63.
[17] Singhal G, Bansod B, Mathew L,et al. Remote Sensing Applications: Society and Environment,2019,15:100235.
[18] Zhu W,Sun Z,Yang T,et al. Computers and Electronics in Agriculture,2020,178:105786.
[19] Li C,Chen P,Ma C,et al. International Journal of Remote Sensing,2020,41(21):8176.
[20] Roosjen P P J, Brede B, Suomalainen J M,et al. International Journal of Applied Earth Observation and Geoinformation,2018,66:14.
[21] Zhang M,Su W,Fu Y,et al. European Journal of Agronomy. 2019,111:125938.
[22] CHANG Xiao-yue,CHANG Qing-rui,WANG Xiao-fan,et al(常潇月,常庆瑞,王晓凡,等). Agricultural Research in the Arid Areas(干旱地区农业研究),2019,37(1):66.
[23] Su W,Sun Z,Chen W H,et al. Remote Sensing,2019,11(20):2409.
[24] LIANG Liang,YANG Min-hua,ZHANG Lian-peng,et al(梁 亮,杨敏华,张连蓬,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2012,28(20):162.
[25] ZHU Xin-kai,SHENG Hai-jun,GU Jing,et al(朱新开,盛海君,顾 晶,等). Journal of Triticeae Crops(麦类作物学报),2005,25(2):46.
[26] Cui B,Zhao Q J,Huang W J,et al. Journal of Integrative Agriculture,2019,18(6):1230.
[27] ZHOU Xiao,BAO Yun-xuan,WANG Lin,et al(周 晓,包云轩,王 琳,等). Chinese Journal of Agrometeorology(中国农业气象),2020,41(3):173.
[28] WU Xu-mei,CHANG Qing-rui,LUO Li-li,et al(武旭梅,常庆瑞,落莉莉,等). Agricultural Research in the Arid Areas(干旱地区农业研究),2019,37(3):238.
[29] Xu X Q,Lu J S,Zhang N,et al. ISPRS Journal of Photogrammetry and Remote Sensing. 2019,150:185.
[30] Savitzky A,Golay M J E. Analytical Chemistry,1964,36(8):1627.
[31] WANG Rui,CHEN Yong-zhong,CHEN Long-sheng,et al(王 瑞,陈永忠,陈隆升,等). Journal of Central South University of Forestry & Technology(中南林业科技大学学报),2013,33(2):77.
[32] Zhang X,Sun W,Cen Y,et al. Science of the Total Environment,2019,650:321.
[33] Sibanda Mbulisi, Mutanga Onisimo, Dube Timothy, et al. Journal of Applied Remote Sensing, 2020, 14(2): 024517.
[34] JI Tong, WANG Bo, WANG Zhan-jun, et al(纪 童, 王 波, 王占军,等). Acta Agrestia Sinica(草地学报), 2020, 28(3): 675.
[35] Zhang A,Yin S,Wang J,et al. Remote Sensing, 2023, 15: 5623.
|
[1] |
CHEN Cheng1, YAN Bing1, YIN Zuo-wei1*, CAO Wei-yu2, WANG Wen-jing1. Study on the Spectrum and Visualization of “Trapiche” Tourmaline Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3429-3434. |
[2] |
WANG Jing1, MA Ling1, MA Si-yan1, MA Yan1, ZHANG Yi-yang1, WU Long-guo1, 2*. Nondestructive Detection of Catalase Activity in Melon Leaves By
Fluorescence Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3455-3462. |
[3] |
XU Jing-yu1, BAO Ni-sha1, 2*, LANG Jie-shuang3, LIU Shan-jun1, 2, MAO Ya-chun1, 2, HE Li-ming1, 2. A Hyperspectral Recognition Method for Camouflaged Targets Based on Background Dictionary Sparse Representation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3534-3542. |
[4] |
GAO Yu1, 2, SUN Xue-jian1, 3*, LI Guang-hua3, 4, ZHANG Li-fu1, 3, QU Liang3, 4, ZHANG Dong-hui5. Hidden Handwriting Recognition of Calligraphy Artifact Based on
Hyperspectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3485-3493. |
[5] |
CAO Wang1, MAO Ya-chun1*, WEN Jie1, DING Rui-bo1, XU Meng-yuan1, FU Yan-hua2. Study on Inversion Method of Anshan-Type Iron Ore Grade Based on
Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3494-3503. |
[6] |
WANG Sa1, 2, QU Liang1, 2*, ZHANG Li-fu3, GAO Yu3, LI Guang-hua1, 2, CHANG Jing-jing1, 2. Research on the Inverse Model of Paper Viscosity Based on Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3524-3533. |
[7] |
HUANG Lin-feng1, JIANG Xue-song1, 2*, JIA Zhi-cheng1, ZHOU Hong-ping1, 2, ZHOU Lei1, RONG Zi-fan1. Deep Learning-Based Monitoring of Nutrient Content in Pear Trees[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3543-3552. |
[8] |
LIU Qing-song1, DU Wen-jing1, LUO Bo2, LI Kai-ge1, DAN You-quan1*, XU Luo-peng1, YANG Xiu-feng2, TANG Shen-lan1. Near Infrared Hyperspectral Identification of Surface Damage on Aircraft Wings[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3069-3074. |
[9] |
PENG Bo1, WEN Zhao-yang1, WEN Qi1, LIU Ting-ting1, 2*, XING Shuai3, WU Teng-fei3, YAN Ming1, 2*. Research of Mid-Infrared Time-Stretch Frequency Upconversion
Hyperspectral Imaging System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3037-3042. |
[10] |
WENG Shi-zhuang, PAN Mei-jing, TAN Yu-jian, ZHANG Qiao-qiao, ZHENG Ling*. Prediction of Soluble Solid Content in Apple Using Image Spectral Super-Resolution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3095-3100. |
[11] |
LI Bin1, 2, LU Ying-jun2, SU Cheng-tao2, LIU Yan-de1, 2. Detection of Different Levels of Damage in Gong Pears Based on
Reflectance/Absorbance/Kubelka-Munk Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3101-3108. |
[12] |
SHI Rui1, 2, ZHANG Han2, WANG Cheng1, 2, KANG Kai2, LUO Bin1, 2*. Detection of Wheat Single Seed Vigor Using Hyperspectral Imaging and Spectrum Fusion Strategy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3206-3212. |
[13] |
DENG Zhi-gang1, 2, ZHAO Hong-mei2*, ZHA Wen-xian2, TANG Lin-ling2, TIAN Ye2. A Hyperspectral Vegetation Feature Band Selection Based on Quantum
Genetic Spectral Angle Mapper Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3258-3265. |
[14] |
ZHONG Qing1, Mamattursun EZIZ1, 2*, Mireguli AINIWAER1, 2, HOU Mao-rui3, LI Hao-ran4. Hyperspectral Inversion of Cobalt Content in Urban Soils[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3266-3272. |
[15] |
GUO Hong-xu1, WANG Long1, YANG Kai1, WU Fan1, DENG Yi-rong2, TANG Chang-cheng1, CHEN Zhi-liang3*, XIAO Rong-bo1*. Research on Combination Optimization of Hyperspectral Inversion Model for Soil Cr Contamination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3273-3279. |
|
|
|
|