|
|
|
|
|
|
Evaluating Ultrafast Adsorption Process With Terahertz Time-Resolved
Spectroscopy |
SHI Xin-zhe1, 2, ZHU Jing1, 2, 3, 4*, LIU Xiao-fei1, 2, WANG Shuai5, ZHU Lian-qing1, 3, 4 |
1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100192, China
2. Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing 100016, China
3. Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China
4. Guangzhou Nansha ZiXi Intelligent Sensing Research Institute, Nansha 511462, China
5. School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
|
|
|
Abstract Volatile organic compounds (VOCs) pollution prevention is an urgent demand for national environmental protection and public health. Adsorption is one of the most effective methods to control VOC pollution. Current understanding of the adsorption mechanism is limited, which hinders its industrial application. Identifying the microscopic adsorption mechanism is a key issue that needs to be urgently addressed for the efficient treatment of VOCs. Existing conventional methods to characterize microscopic adsorption cannot directly monitor ultrafast adsorption in real-time. New theories and techniques need to be constantly developed. In recent years, terahertz waves have shown great potential in characterizing adsorption processes. Weak interactions in the adsorption process include van der Waals forces and hydrogen bonds, whose vibrational modes are in the THz band. The surface interface mobility carrier changes due to bond breaking and formation have different THz response characteristics for different concentrations. Optical parameters of THz spectra, such as absorption peaks, amplitudes, and waveforms, have been used to characterize adsorption properties. The breaking and formation of chemical bonds in the adsorption process is on the order of picoseconds. Effective information on the femtosecond timescale is not directly available due to the limitation of the THz time resolution. Continued breakthroughs in terahertz time-resolved spectroscopy in ultrafast process monitoring satisfy the need to explore ultrafast adsorption processes on time scales and lay the foundation for uncovering microscopic adsorption mechanisms. This paper reviewed adsorption law studied by terahertz waves, and ultrafast processes were researched using terahertz time-resolved spectroscopy in recent years. Finally, the development directions and major challenges of terahertz time-resolved spectroscopy in ultrafast adsorption are proposed.
|
Received: 2023-08-03
Accepted: 2023-11-08
|
|
Corresponding Authors:
ZHU Jing
E-mail: 20192322@bistu.edu.cn
|
|
[1] Zhang Xueyang, Gao Bin, Creamer Anne Elise, et al. Journal of Hazardous Materials, 2017, 338: 102.
[2] Li Xiuquan, Zhang Li, Yang Zhongqing, et al. Separation and Purification Technology, 2020, 235: 116213.
[3] Li Dashuai, Lu Jiaxin, Wang Changhua, et al. Applied Catalysis A, General, 2022, 647: 118908.
[4] Wang Xun, Wu Linke, Wang Zhiwei, et al. Applied Catalysis B: Environmental, 2023, 322: 122075.
[5] Qin Linbo, Xu Zhe, Liu Lei, et al. Waste Management, 2020, 105: 317.
[6] Zhu Lingli, Shen Dekui, Luo Kaihong. Journal of Hazardous Materials, 2020, 389: 122102.
[7] Xu Hao, Xu Xiafan, Chen Liubiao, et al. Energy Conversion and Management, 2021, 238: 114157.
[8] Gan Guoqiang, Fan Shiying, Li Xinyong, et al. Journal of Environmental Sciences, 2023, 123: 96.
[9] Wee Kong Pui, Rozita Yusoff, Mohamed Kheireddine Aroua. Reviews in Chemical Engineering, 2019, 35(5): 649.
[10] Shen Xiaoqiang, Du Xuesen, Yang Dafei, et al. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729.
[11] Chen Huai, Mu Xiaoya, Ma Jun, et al. Arabian Journal of Chemistry, 2022, 15(11): 104192.
[12] Liu Xianyu, Zhu Hongxia, Wu Wenhao, et al. Journal of Hazardous Materials, 2022, 424: 127355.
[13] Dmitriy Borodin, Igor Rahinov, Pranav R Shirhatti, et al. Science, 2020, 369(6510): 1461.
[14] Qiu Hongxia, Deng Jiushuai, Wu Bozeng, et al. Applied Surface Science, 2023, 615: 156370.
[15] Dong Yuecen, Kong Xiangrui, Luo Xingshen, et al. Chemosphere, 2022, 303: 134685.
[16] Yuan Rui, Li Pei, Xu Benhua, et al. Journal of Environmental Chemical Engineering, 2021, 9(6): 106615.
[17] Zhao Qiangyu, Zhao Zhenyuan, Rao Renzhi, et al. Journal of Colloid and Interface Science, 2022, 627: 385.
[18] Tan Xiangyang, Zhu Dapeng, Shi Zhen, et al. Ceramics International, 2020, 46(9): 13925.
[19] Yin Tao, Meng Xuan, Wang Sitan, et al. Separation and Purification Technology, 2022, 280: 119634.
[20] Lu Shuangchun, Liu Qingling, Han Rui, et al. Chemical Engineering Journal, 2021, 409: 128194.
[21] Mazhar Syeda Irsa, Shafi Hafiz Zahid, Shah Attaullah, et al. Journal of Polymer Research, 2020, 27(8): 222.
[22] Liu Huijuan, Wei Keyan, Long Chao. Chemical Engineering Journal, 2022, 442: 136108.
[23] Qi Junwen, Li Yang, Wei Guoping, et al. Separation and Purification Technology, 2017, 188: 112.
[24] Mao Haiyan, Tang Jing, Xu Jun, et al. Matter, 2020, 3(6): 2093.
[25] Ma Xiaoling, Wang Wenlong, Sun Chenggong, et al. Science of The Total Environment, 2021, 793: 148622.
[26] Fu H, Li H P, Zhao H, et al. Petroleum Chemistry, 2014, 54: 239.
[27] Lee Jeongjun, Jeon Jihyun, Jang Junhwan, et al. PLOS ONE, 2020, 15(1): e0227430.
[28] Xie Juan, Zhang Lei, Xing Haiyang, et al. Sensors and Actuators B: Chemical, 2020, 305: 127479.
[29] Kusaka Ryoji, Nihonyanagi Satashi, Tahara Tahei. Nature Chemistry, 2021, 13: 306.
[30] Anna Jessica M, Kubarych Kevin J. International Reviews in Physical Chemistry, 2012, 31(3): 367.
[31] Cutini Michele, Forghieri Gaia, Ferrario Mauro, et al. Carbon, 2023, 203: 601.
[32] Zhang Hua, Li Lulu, Zhou Shiwei. Chemosphere, 2014, 111: 434.
[33] Yang Yucheng, Xiang Yang, Chu Guangwen, et al. Chemical Engineering Journal, 2016, 294: 111.
[34] Wang Jianlong, Guo Xuan. Journal of Hazardous Materials, 2020, 390: 122156.
[35] Shim Wang Geun, Lee Jae Wook, Moon Hee. Microporous and Mesoporous Materials, 2006, 88(1-3): 112.
[36] Terzyk Artur P, Szymański Grzegorz S, Korczeniewski Emil D, et al. Adsorption, 2019, 25: 33.
[37] Zhong Shuncong. Frontiers of Mechanical Engineering, 2019, 14(3): 273.
[38] Pickwell E, Wallace V P. Journal of Physics D: Applied Physics, 2006, 39(17): R301.
[39] Afsah-Hejri Leili, Hajeb Parvaneh, Ara Parsa, et al. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1563.
[40] Xu Ying, Jiang Xuelei. Infrared Physics & Technology, 2022, 127: 104467.
[41] Xu Cheng, Ren Zhihao, Wei Jingxuan, et al. iScience, 2022,25: 103799.
[42] Du Wanyi, Yao Zehan, Zhu Lipeng, et al. Applied Physics Letters, 2020, 117(8): 081106.
[43] Gezimati M, Singh G. Advances in Terahertz Instrumentation and Technology for Cancer Applications[C]//47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2022.
[44] Wang Houng-wei, Hayashi Michitoshi. Journal of the Chinese Chemical Society, 2023, 70(3): 759.
[45] Elgabarty Hossam, Kampfrath Tobias, Bonthuis Douwe Jan, et al. Science Advances, 2020, 6(17): 7074.
[46] Liu T, Yan F, Zhang J, et al. Application of Terahertz Spectroscopy in the Detection of Carbohydrate Isomers[C]//Advances in Precision Instruments and Optical Engineering: Proceedings of the International Conference on Precision Instruments and Optical Engineering, 2021. Singapore: Springer Nature Singapore, 2022: 345.
[47] He Yuxin, Yang Lijun, Cheng Li, et al. Cellulose, 2023, 30(2): 727.
[48] Du Wanyi, Huang Yuanyuan, Zhou Yixuan, et al. Journal of Physics D: Applied Physics, 2022,55: 223002.
[49] Huber A J, Keilmann F, Wittborn J, et al. Nano Letters, 2008, 8: 3766.
[50] Ma Yanjun, Huang Mengchen, Ryu Sangwoo, et al. Nano Letters, 2013, 13: 2884.
[51] Tanno Takenori, Watanabe Yutaro, Umeno Kyoko, et al. The Journal of Physical Chemistry C, 2017, 121(33): 17921.
[52] Lee Sang-Hun, Choe Jong-Ho, Kim Chulki, et al. Sensors and Actuators B: Chemical, 2020, 310: 127841.
[53] Ohkoshi Shin-ichi, Yoshikiyo Marie, Namai Asuka, et al. Scientific Reports, 2017, 7(1): 8088.
[54] Huang Yu-Ru, Liu Kao-Hsiang, Mou Chuang-Yuan, et al. Applied Physics Letters, 2015, 107(8): 081607.
[55] Zhan Honglei, Wu Shixiang, Bao Rima, et al. RSC Advances, 2015, 5(19): 14389.
[56] Zhu Jing, Zhan Honglei, Miao Xinyang, et al. Physical Chemistry Chemical Physics, 2016, 18(39): 27175.
[57] Zhu Jing, Zhan Honglei, Miao Xinyang, et al. Journal of Physics D: Applied Physics, 2017, 50(23): 235103.
[58] Zhu Jing, Zhan Honglei, Zhao Kun, et al. Chinese Physics B, 2019, 28(2): 020204.
[59] Sano Y, Kawayama I, Tabata M, et al. Scientific Reports, 2014, 4: 6046.
[60] Bagsican F, Winchester A, Ghosh S, et al. Evaluation of Local Adsorption Energy of Oxygen on Graphene Using Laser THz Emission Spectroscopy[C]//CLEO: Science and Innovations. Optica Publishing Group, 2016: STh4I. 8.
[61] Bagsican Filchito Renee, Winchester Andrew, Ghosh Sujoy, et al. Scientific Reports, 2017, 7: 1774.
[62] Karuppuswami S, Byford J A, Chahal P A. Volatile Molecular Sensor Using Terahertz Resonators on Porous Substrates[C]//68th IEEE Electronic Components and Technology Conference (ECTC 2018), 2018: 2295.
[63] Lu Junpeng, Liu Hongwei. Optics Communications, 2018, 406: 24.
[64] Mithun K P, Tripathi Shalini, Roy Ahin, et al. Nanoscale, 2023, 15(30): 12670.
[65] Neu Jens. APL Photonics, 2023, 8(7): 071103.
[66] Van Hoof N J J, Ter Huurne S E T, Rivas J G, et al. Optics Express, 2018, 26(24): 32118.
[67] Zhang Zeyu, Lin Tie, Xing Xiao, et al. Applied Physics Letters, 2017, 110(11): 111108.
[68] Xing Xiao, Zhao Litao, Zhang Zeyu, et al. Journal of Physics: Condensed Matter, 2019, 31(24): 245001.
[69] Hafez H A, Chai X, Sekine Y, et al. Physical Review B, 2017, 95(16): 165428.
[70] Alberding B G, Heilweil E J. Time-Resolved Terahertz Spectroscopy of Electrically Conductive Metal-Organic Frameworks Doped with Redox Active Species[C]//Conference on Organic Photovoltaics XVI, Proceedings of SPIE, 2015, 9567: 95671L.
[71] Zhao Hang, Tan Yong, Zhang Liangliang, et al. Light: Science & Applications, 2020, 9(1): 136.
[72] Zhao Hang, Tan Yong, Zhang Rui, et al. Optics Letters, 2021, 46(2): 230.
[73] Zhao Hang, Tan Yong,Wu Tong, et al. Optics Communications, 2021, 497: 127192.
[74] GAO Fei-xue, YIN Xiao-dong(高飞雪, 伊晓东). Scientia Sinica:Chimica(中国科学: 化学), 2021, 51(7): 932.
[75] Expert Group of the Strategy Seminar(催化与表界面化学学科前沿与发展战略研讨会专家组). Chinese Journal of Catalysis(催化学报), 2019, 40(s1): 1.
|
[1] |
LU Si, CHEN Xiao-li, SU Qiu-cheng, QI Wei, XIA Sheng-peng, LI Ming, FU Juan*. The Study of Experimental Method on the Characterization of Acidic Properties of Zeolites by in Situ FTIR-Pyridine Adsorption[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2488-2493. |
[2] |
CHEN Hao1, JIA Ye1, XU Jie1, DUAN Jun2, LIANG Shuai-xi3*. Spectral Detection Techniques and Field Applications for Typical
Atmospheric α-Dicarbonyl Compounds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2127-2136. |
[3] |
XU Xiu-ping1, 3, XU Wei-cheng2, YU Xian-kun1, 3, CHEN Yu4, YANG Gang5, ZHANG Hao1, 2, 6*. The Kinetic Mechanism of Nickel and Lead Adsorption by Converter Steel Slag Powder Was Studied Based on ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 594-600. |
[4] |
CHAI Lin-lin, Areyi Mulati, Shawket Abliz*. Analysis the Adsorption Behaviors of Acetic Acid Modified Sand Grains for Lead Ions by Atomic Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2775-2778. |
[5] |
ZHENG Li-zhen1, 2, CHENG Cong2, MA Wen-hua2, WANG Zhuo-rui2, HU Dao-dao2*. Online Detection of Water Forms and Moisture Volatilization Behavior in Earthen Relics Based on FE Fluorescence Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 383-388. |
[6] |
SONG Hong-yan, ZHAO Hang, YAN Xia, SHI Xiao-feng, MA Jun*. Adsorption Characteristics of Marine Contaminant Polychlorinated Biphenyls Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 704-712. |
[7] |
FAN Chun-hui1,2, ZHENG Jin-huan3, WANG Yu-fei3, SU Zhe3, LIN Long-jian3, YANG Chen3. Adsorption of Cadmium on Fe-Mn Nodules Derived From Soil by Spectral Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 616-621. |
[8] |
CHEN Geng-yin1, ZHANG Qi-hang1, LIU Yu-zhu1, 2*, ZHANGCHENG Yuan-zhe1, CHEN Yu1, CHEN Guo-qing1, HAN Bo-yuan1, ABULIMITI Bumaliya3*. Online Detection of VOCs Based on LIBS and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2729-2733. |
[9] |
TANG Gu-hua, ZHANG Hui, SUN Xin-yuan, XU Meng, OUYANG Jian-ming*. Differences in Adsorption of Anionic Surfactant AOT by Calcium Oxalate Dihydrate With Different Morphologies[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1079-1085. |
[10] |
MIAO Chuang-he1,2, LÜ Yi-zhong1, 2*, YU Yue1, ZHAO Kang1. Study on Adsorption Behavior of Dissolved Organic Matter Onto Soil With Spectroscopic Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3832-3838. |
[11] |
LÜ Xi-juan1, ZHANG Yun-hong2*. Observation of the Repartitioning of Malonic Acid in Levitated Malonic Acid/NaNO3/H2O Droplets by Optical Tweezers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3098-3101. |
[12] |
ZHANG Qiang1, 2, WEI Ru-yi1*, YAN Qiang-qiang1, ZHAO Yu-di1, ZHANG Xue-min1, YU Tao1. Application of Deep Neural Network in Quantitative Analysis of VOCs by Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1099-1106. |
[13] |
ZHANG Shu-xin1, JIANG Ran2, YUN Na1*, CHAI Xin-sheng 3, GUO Wei1. Adsorption of Benzethonium Chloride Fungicide on Nonwoven Wipes by Kinetic Ultraviolet-Visible Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3084-3087. |
[14] |
ZHANG Chong-hui, HE Ting-shu*, LI Hui, BU Xian-zhong. Adsorption Thermodynamics and Kinetics of Xanthate at Chalcopyrite Surface Based on Ultraviolet Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3172-3178. |
[15] |
FENG Lei1, CHEN Xi-qin1, CHENG Zu-shun1, WEN Xiao-dong1, 2*. Quantitative Analysis for Adsorption of Polycarboxylate Superplasticizer with Different Side-Chain Length on Tuff Powder Using Second Derivative Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2788-2793. |
|
|
|
|