|
|
|
|
|
|
Terahertz Spectroscopic Early Diagnosis of Cerebral Ischemia in Rats |
WANG Yu-ye1, 2, LI Hai-bin1, 2, JIANG Bo-zhou1, 2, GE Mei-lan1, 2, CHEN Tu-nan3, FENG Hua3, WU Bin4ZHU Jun-feng4, XU De-gang1, 2, YAO Jian-quan1, 2 |
1. Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2. Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
3. Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
4. Science and Technology on Electronic Test & Measurement Laboratory, Qingdao 266555, China
|
|
|
Abstract Cerebral ischemia is a common sudden cerebral surgical disease with a high lethality and disability rate. The rapid and accurate detection of cerebral ischemia is of great significance to the diagnosis and treatment of cerebral ischemia. Inthispaper, we performed spectroscopy on cerebrospinal fluid (CSF) and serum of rats with ischemia time of 0, 0.5, 1, 2, 4, 6 and 24 h respectively, based on attenuated total reflection terahertz time-domain spectroscopy (THz-TDS). The changes in absorption coefficient and refractive index of CSF and serum with different ischemic times were analyzed. The results showed that the absorption coefficient and refractive index of CSF and serum of rats with different ischemic times were somewhat different compared with the control group. Furthermore, according to the absorption coefficient of CSF and serum with different ischemic times, principal component analysis and machine learning algorithms were used to automatically classify and recognize the degree of cerebral ischemia in rats. Especially, the recognition accuracy of the support vector machine classification model based on the absorption coefficient of CSF is relatively high, reaching 89.3%. Combining terahertz spectroscopic detection of CSF and serum ofrats with machine learning algorithms provides a new and effective detection method for the early diagnosis of cerebral ischemia.
|
Received: 2022-01-21
Accepted: 2022-06-16
|
|
|
[1] Denes A, Vidyasagar R, Feng J, et al. Journal of Cerebral Blood Flow and Metabolism, 2007, 27(12): 1941.
[2] Chen L, Zhao N N,Xu S. Journal of International Medical Research, 2021, 49(3): 0300060520972601.
[3] Kidwell C S, Wintermark M, De S D A, et al. Stroke, 2013, 44(1): 73.
[4] Cremers Charlotte H P, Vos Pieter C, van der Schaaf Irene C, et al. Neuroradiology, 2015, 57(9): 897.
[5] Zhang H, Zhang B, Li S, et al. Clinical Neurology and Neurosurgery, 2013, 115(12): 2496.
[6] Gavdush A A, Chernomyrdin N V, Malakhov K M, et al. Journal of Biomedical Optics, 2019, 24(2): 027001.
[7] Wang Y Y, Wang G Q, Xu D G, et al. Biomedical Optics Express, 2020, 11(8): 4085.
[8] Shi W, Wang Y Z, Hou L, et al. Journal of Biophotonics, 2021, 14(1): e202000237.
[9] Zhang Y, Han J, Wang D, et al. Journal of Infrared Millimeter and Terahertz Waves, 2021, 42(7): 1.
[10] El-Shenawee M, Vohra N, Bowman T, et al. Biomedical Spectroscopy and Imaging, 2019, 8(1-2): 1.
[11] LI Zhao, MENG Kun, FU Chu-hua, et al(李 钊, 孟 坤, 傅楚华, 等). Chinese Journal of Neurosurgery(中华神经外科杂志), 2014, 30(6): 640.
[12] ZHANG Zhang, MENG Kun, ZHU Li-guo, et al(张 章, 孟 坤, 朱礼国, 等). Laser Technology(激光技术), 2016, 40(3): 372.
[13] WANG Yu-ye, SUN Zhong-cheng, XU De-gang, et al(王与烨, 孙忠成, 徐德刚, 等). Acta Optica Sinica(光学学报), 2020, 40(4): 0430001.
[14] BAO Xin-jie, LI Xue-yuan, ZUO Fu-xing, et al(包新杰, 李雪元, 左赋兴, 等). Acta Laboratorium Animalis Scientia Sinica(中国实验动物学报), 2016, 24(4): 395.
[15] Li L, Yu Q,Liang W M. Pathology-Research and Practice, 2018, 214(1): 174.
[16] Petzold A, Keir G, Warren J, et al. Neurodegenerative Diseases, 2007, 4(2-3): 185.
[17] Qiu Y, Sun J, Shang Y L, et al. Symmetry, 2021, 13(9): 1714.
[18] LIU Jun-xiu, DU Bin, DENG Yu-qiang, et al(刘俊秀, 杜 彬, 邓玉强, 等). Chinese Journal of Lasers(中国激光), 2019, 46(6): 0614039.
[19] Li K D, Chen X Q, Zhang R, et al. IEEE Transactions on Terahertz Science and Technology, 2020, 10(6): 617.
[20] HU Jun, LIU Yan-de, SUN Xu-dong, et al(胡 军, 刘燕德, 孙旭东, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(11): 3566.
|
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[3] |
WAN Mei, ZHANG Jia-le, FANG Ji-yuan, LIU Jian-jun, HONG Zhi, DU Yong*. Terahertz Spectroscopy and DFT Calculations of Isonicotinamide-Glutaric Acid-Pyrazinamide Ternary Cocrystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3781-3787. |
[4] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[7] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[8] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[9] |
LI Yang1, LI Xiao-qi1, YANG Jia-ying1, SUN Li-juan2, CHEN Yuan-yuan1, YU Le1, WU Jing-zhu1*. Visualisation of Starch Distribution in Corn Seeds Based on Terahertz Time-Domain Spectral Reflection Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2722-2728. |
[10] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[11] |
LÜ Shi-lei1, 2, 3, WANG Hong-wei1, LI Zhen1, 2, 3*, ZHOU Xu1, ZHAO Jing1. Hyperspectral Identification Model of Cantonese Tangerine Peel Based on BWO-SVM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2894-2901. |
[12] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[13] |
ZHANG Hai-liang1, XIE Chao-yong1, TIAN Peng1, ZHAN Bai-shao1, CHEN Zai-liang1, LUO Wei1*, LIU Xue-mei2*. Measurement of Soil Organic Matter and Total Nitrogen Based on Visible/Near Infrared Spectroscopy and Data-Driven Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2226-2231. |
[14] |
LI Hao-dong1, 2, LI Ju-zi1*, CHEN Yan-lin1, HUANG Yu-jing1, Andy Hsitien Shen1*. Establishing Support Vector Machine SVM Recognition Model to Identify Jadeite Origin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2252-2257. |
[15] |
LI Bin, HAN Zhao-yang, WANG Qiu, SUN Zhao-xiang, LIU Yan-de*. Research on Bruise Level Detection of Loquat Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1792-1799. |
|
|
|
|