|
|
|
|
|
|
Identification of Pesticide Residue Types in Chinese Cabbage Based on Hyperspectral and Convolutional Neural Network |
JIANG Rong-chang1, 2, GU Ming-sheng2, ZHAO Qing-he1, LI Xin-ran1, SHEN Jing-xin1, 3, SU Zhong-bin1* |
1. Institute of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
2. Harbin City Data Center, Harbin 150030, China
3. Shandong Academy of Agricultural Machinery Sciences, Jinan 250100, China
|
|
|
Abstract Traditional chemical detection methods for analyzing pesticide residues in chinese cabbage are slow and destructive. In this study, a rapid, non-destructive method for identifying the types of pesticide residues in chinese cabbage samples was developed. First, the hyperspectral imaging system was used to analyze chinese cabbage samples exposed to one of four pesticides chlorpyrifos, dimethoate, methomyl and cypermethrin. The pesticide concentration ratios were 0.10, 1.00, 0.20 and 2.00 mg·kg-1, respectively; and the data was compared to a pesticide-free sample. After 12 hours of natural degradation at room temperature, a hyperspectral imaging system corrected by a black and white plate was used to obtain 400~1 000 nm hyperspectral images of chinese cabbage samples, and the target area was selected by ENVI software. The specific regions of interest (ROI) in samples were further investigated, and the pre-processing by multiple scattering correction (MSC). Secondly, three algorithms such as competitive adaptive reweighting algorithm (CARS), principal component analysis (PCA), discrete wavelet transform (DWT) (based on db1, sym2, coif1, bior2.2, and rbio1.5 wave base functions) were then used to screen for dimensionality reduction from optimally pre-processed results. Finally, the screening results and the samples divided by the Kennard-Stone algorithm were adopted to construct three recognition models separately. Such as k-nearest-neighbor (KNN), support vector machine (SVM), multilayer perceptron (MLP) and convolutional neural network (CNN) were used to determine the best screening method for the dimension of pesticide residues and the optimal hyperspectral recognition model. Our results showed that the CNN, MLP, KNN, and SVM algorithms achieve the best overall accuracy (91.20%, 83.20%, 66.40%, and 90.40%, respectively), Kappa coefficient (0.89, 0.79, 0.58, and 0.88), and the prediction set time (86.01, 63.23, 20.02 and 14.03 ms) under the dimensionality reduction algorithm DWT, respectively; the wavelet basis function and the number of transform layers are coif1-2, coif1-4, bior2.2-2 and sym2-2. All three indicators are better than the modeling results based on CARS and PCA dimensionality reduction algorithms. It showed that the combination of discrete wavelet transform and convolutional neural network shortens the time of classification and identification and significantly improves the classification and identification accuracy, and improves the Hughes phenomenon, providing a new method for non-destructive and rapid detection and identification of chinese cabbage pesticide residues.
|
Received: 2021-08-03
Accepted: 2021-10-31
|
|
Corresponding Authors:
SU Zhong-bin
E-mail: suzb001@163.com
|
|
[1] LIU Chun-long, WANG Cheng, GUO Yu(刘春龙,王 成,郭 禹). Agriculture and Technology(农业与技术), 2019, 39(15): 42.
[2] Zhu Xiaoyu, Li Wenjin, Wu Ruimei, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 250: 119366.
[3] LI Chun-yu, GE Xiao, JIN Yan-ting, et al(李春雨,葛 啸,金燕婷, 等). Agricultural Engineering(农业工程), 2019, 9(6): 33.
[4] Sun Jun, Cong Sunli, Mao Hanping, et al. Journal of Food Process Engineering, 2018, 41(2): e12654.
[5] JI Hai-yan, REN Zhan-qi, RAO Zhen-hong(吉海彦,任占奇,饶震红). Chinese Journal of Luminescence(发光学报), 2018, 39(12): 1778.
[6] XU Tong-yu, GUO Zhong-hui, YU Feng-hua, et al(许童羽,郭忠辉,于丰华, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(2): 209.
[7] DENG Lai-fei, ZHANG Fei, QI Ya-xiao, et al(邓来飞,张 飞,齐亚霄, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(1): 247.
[8] SHI Yun, MA Dong-hui, LÜ Jie, et al(师 芸,马东晖,吕 杰, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(6): 151.
[9] SUN Jun, ZHANG Mei-xia, MAO Han-ping, et al(孙 俊,张梅霞,毛罕平, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2015, 46(6): 251.
|
[1] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[2] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[3] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[4] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[5] |
WU Hu-lin1, DENG Xian-ming1*, ZHANG Tian-cai1, LI Zhong-sheng1, CEN Yi2, WANG Jia-hui1, XIONG Jie1, CHEN Zhi-hua1, LIN Mu-chun1. A Revised Target Detection Algorithm Based on Feature Separation Model of Target and Background for Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 283-291. |
[6] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[7] |
CHU Bing-quan1, 2, LI Cheng-feng1, DING Li3, GUO Zheng-yan1, WANG Shi-yu1, SUN Wei-jie1, JIN Wei-yi1, HE Yong2*. Nondestructive and Rapid Determination of Carbohydrate and Protein in T. obliquus Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3732-3741. |
[8] |
HUANG You-ju1, TIAN Yi-chao2, 3*, ZHANG Qiang2, TAO Jin2, ZHANG Ya-li2, YANG Yong-wei2, LIN Jun-liang2. Estimation of Aboveground Biomass of Mangroves in Maowei Sea of Beibu Gulf Based on ZY-1-02D Satellite Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3906-3915. |
[9] |
ZHOU Bei-bei1, LI Heng-kai1*, LONG Bei-ping2. Variation Analysis of Spectral Characteristics of Reclaimed Vegetation in an Ionic Rare Earth Mining Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3946-3954. |
[10] |
YUAN Wei-dong1, 2, JU Hao2, JIANG Hong-zhe1, 2, LI Xing-peng2, ZHOU Hong-ping1, 2*, SUN Meng-meng1, 2. Classification of Different Maturity Stages of Camellia Oleifera Fruit
Using Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3419-3426. |
[11] |
FU Gen-shen1, LÜ Hai-yan1, YAN Li-peng1, HUANG Qing-feng1, CHENG Hai-feng2, WANG Xin-wen3, QIAN Wen-qi1, GAO Xiang4, TANG Xue-hai1*. A C/N Ratio Estimation Model of Camellia Oleifera Leaves Based on
Canopy Hyperspectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3404-3411. |
[12] |
SHEN Ying, WU Pan, HUANG Feng*, GUO Cui-xia. Identification of Species and Concentration Measurement of Microalgae Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3629-3636. |
[13] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[14] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[15] |
QIAN Rui1, XU Wei-heng2, 3 , 4*, HUANG Shao-dong2, WANG Lei-guang2, 3, 4, LU Ning2, OU Guang-long1. Tea Plantations Extraction Based on GF-5 Hyperspectral Remote Sensing
Imagery in the Mountainous Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3591-3598. |
|
|
|
|