|
|
|
|
|
|
Inversion of Soil Organic Matter Fraction in Southern Xinjiang by Visible-Near-Infrared and Mid-Infrared Spectra |
LUO De-fang1, PENG Jie1*, FENG Chun-hui1, LIU Wei-yang1, JI Wen-jun2, WANG Nan3 |
1. College of Plant Sciences,Tarim University,Alar 843300, China
2. College of Land Resources Management, China Agricultural University,Beijing 100083, China
3. College of Environment and Resources, Zhejiang University,Hangzhou 310058, China |
|
|
Abstract Soil organic matter is the material basis of soil fertility, and its fraction is an important indicator to evaluate soil fertility. Soil organic matter fractions can be divided into humin (HM), humic acid (HA) and fulvic acid (FA) according to their solubility. The fertility characteristics of different fractions are significantly different. Therefore, the data of soil organic matter fractions can reflect the status of soil fertility more comprehensively and objectively. The traditional determination of soil organic matter and its fractions is complex, inefficient and time-effective. Many studies show that hyperspectral technology can effectively improve the detection efficiency of soil properties and reduce the testing cost, but the reports on the detection of soil organic matter fractions by visible-near infrared and mid infrared spectroscopy are rare. 93 soil samples were collected and analyzed to acquire the content and spectral information of SOC, HM, HA in Aksu and Hetian, southern Xinjiang, and to explore further the feasibility of mid-infrared spectroscopy and visible near infrared-mid infrared combined spectroscopy in detecting soil organic matter fractions and to comparing the prediction accuracy of a single spectral model for organic matter with that of a combined spectral model for different soil organic matter fractions. Secondly, three kinds of spectral data sets of visible near-infrared (VNIR), mid-infrared (MIR) and their combined spectra (VNIR-MIR) were used to analyze and predict the contents of soil organic matter, HM, HA and FA by using three modeling methods of partial least squares (PLSR), support vector machine (SVM) and random forest (RF). The results show that: (1) soil organic matter and its fractions had a good correlation with spectral reflectance, and the number of characteristic bands of soil organic matter and its fractions in Mir was significantly more than that in VNIR. (2) The optimal prediction model of organic matter is VNIR-MIR-RF with R2 of 0.90; the optimal prediction model of HM and HA is VNIR-RF model with R2 of 0.92; the optimal prediction model of FA is VNIR-RF model with R2 of 0.94. (3) The prediction accuracy of the organic matter combination spectral model based on HM, HA and FA is significantly higher than that of the single spectral model. The R2 of the two models is 0.93 and 0.90, respectively. The results of this study realized the efficient and rapid inversion of soil organic matter fractions, and the combined model based on organic matter fractions improved the prediction accuracy of soil organic matter and provided important reference value for large-scale soil fertility identification and precision fertilization in southern Xinjiang.
|
Received: 2020-09-04
Accepted: 2020-12-28
|
|
Corresponding Authors:
PENG Jie
E-mail: pjzky@163.com
|
|
[1] Peng J, Biswas A, Jiang Q S, et. al. Geoderma,2019, 337: 1309.
[2] Hayes M H B, Mylotte R, Swift R S. Advances in Agronomy,2017, 143: 47.
[3] Vasat R, Kodesova R, Boruvka L, et al. Geoderma, 2014, 232.
[4] Jiang Q H, Chen Y Y, Guo L, et al. Remote Sensing,2016, 8(9): 755.
[5] CHEN Si-ming, ZOU Shuang-quan, MAO Yan-ling, et al(陈思明, 邹双全, 毛艳玲, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2018, 38(3): 912.
[6] Bao N, Wu L X, Ye B Y, et al. Geoderma,2017, 288: 47.
[7] Wang S Q, Li W D, Li J, et al. Soil Science,2013, 178(11): 626.
[8] Peng J, Ji W J, Ma Z Q, et al. Proximal Soil Sensing,2016, 152: 94.
[9] Nowkandeh S M, Noroozi A A, Homaee M. Environmental Development,2018, 25: 23.
[10] Zhao C H, Gao B, Zhang L J, et al. Infrared Physics and Technology,2018, 95: 61.
[11] Zhang Y, Sui B, Shen H, et al. Computers and Electronics in Agriculture,2019, 160: 23.
[12] Clark R N, King T V V, Klejwa M, et al. Journal of Geophysical Research,1990, 95(12): 653.
[13] Bernier M H, Levy G J, Fine P, et al. Geoderma,2013, (209-210): 233.
[14] Gu X H, Wang Y C, Sun Q, et al. Computers and Electronics in Agriculture,2019, 167: 105053.
[15] Dinesh B M, Baldock J A, Read Z J, et al. Journal of Environmental Management, 2017, 193: 290.
[16] Machado W, Franchini J C, Guimaraes M G, et al. Heliyon,2020, 6: e04078. |
[1] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[2] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[5] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[6] |
MA Yuan, LI Ri-hao, ZHANG Wei-feng*. Research on the Training Samples Selection for Spectral Reflectance
Reconstruction Based on Improved Weighted Euclidean Distance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3924-3929. |
[7] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[8] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[9] |
YAN Xing-guang, LI Jing*, YAN Xiao-xiao, MA Tian-yue, SU Yi-ting, SHAO Jia-hao, ZHANG Rui. A Rapid Method for Stripe Chromatic Aberration Correction in
Landsat Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3483-3491. |
[10] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
DONG Jian-jiang1, TIAN Ye1, ZHANG Jian-xing2, LUAN Zhen-dong2*, DU Zeng-feng2*. Research on the Classification Method of Benthic Fauna Based on
Hyperspectral Data and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3015-3022. |
[13] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
|
|
|
|