|
|
|
|
|
|
The Classification of Plant Leaves by Applying Chemometrics Methods on Laser-Induced Breakdown Spectroscopy |
DING Jie, ZHANG Da-cheng*, WANG Bo-wen, FENG Zhong-qi, LIU Xu-yang, ZHU Jiang-feng |
School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China |
|
|
Abstract Laser induced breakdown spectroscopy (LIBS) is a highly efficient and rapid elemental analysis method. It can be applied to the elemental analysis of various materials. Linear discriminant analysis (LDA) and support vector machine (SVM) are two commonly used supervised algorithms in chemometrics. These two methods both need to build the models with known sample data, and then to classify unknown sample data. In order to achieve high accuracy of recognition for organics by LIBS technology, these two algorithms were used to analyze LIBS spectra. In this experiment, a nanosecond laser with 1 064 nm wavelength was used to ablate three kinds of plant leaves (Ligustrum lucidum, Viburnum odoratissinum, bamboo) to produce plasma. The plasma spectra were acquired by an optical fiber spectrometer in the range of 220 to 432 nm. 100 spectra from each kind of plant leaves were collected. Firstly, the principal component extraction for the original spectral data of 300 samples was carried out. Then the first two principal components (PC1, PC2) were used to make the score plot. The spectra of these three kinds of plant leaves are very similarities so that they could not be identified directly. Then, 70 spectra of each kind of plant sample were set as a train set, and the other 30 spectra were used as the test set to test the classification model. The first 20 principal components extracted by the PCA were used as attribute values for modeling of LDA and SVM. For the LDA, the spectra were processed to obtain the first two discriminant function values. The larger scatter distribution intervals for different types of leaves can be acquired by plotting the discriminant function values. Then combined with the Mahalanobis distance, the average classification accuracy of the test set was up to 96.67%. Similarly, the SVM method was used to learn the characters of the train set to obtain the classification hyperplane. The average classification accuracy rate of SVM for the test set was up to 98.89%, which is better than LDA. This work can be helpful to food traceability, in situ identification of biological tissues and remote analysis of organic explosives by LIBS technology.
|
Received: 2020-01-15
Accepted: 2020-05-08
|
|
Corresponding Authors:
ZHANG Da-cheng
E-mail: dch.zhang@xidian.edu.cn
|
|
[1] Senesi G S, Senesi N. Analytica Chimica Acta, 2016, 938: 7.
[2] Wang Z, Yuan T B, Hou Z Y, et al. Frontiers of Physics, 2014, 9(4): 419.
[3] Zhang D C, Hai B, Zhu J F, et al. Optics Express, 2018, 26(14): 18794.
[4] Sirven J B, Salle B, Mauchien P, et al. Journal of Analytical Atomic Spectrometry, 2007, 22(12): 1471.
[5] Moncayo S, Manzoor S, Ugidos T, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 101: 21.
[6] Dingrai N C, Barman I, Myakalwar A K, et al. Analytical Chemistry, 2012, 84(6): 2686.
[7] Vítková G, Novotný K, Prokeš L, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 73(3): 1.
[8] Celani C P, Lancaster C A, Jordan J A, et al. Analyst, 2019, 144(17): 5117.
[9] Wang Q Q, Teng G, Qiao X L, et al. Biomedical Optics Express, 2018, 9(11): 5837.
[10] Li X H, Yang S B, Fan R W, et al. Optics and Laser Technology, 2018, 102: 233.
[11] Yu J L, Hou Z Y, Sheta S, et al. Analytical Methods, 2018, 10(3): 281.
[12] Cortes C, Vapnik V. Machine Learning, 1995, 20(3): 273.
[13] Chang C C, Lin C J. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1. |
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[4] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[5] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[6] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[7] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[8] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[9] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[10] |
FANG Zheng, WANG Han-bo. Measurement of Plastic Film Thickness Based on X-Ray Absorption
Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3461-3468. |
[11] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[12] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[13] |
JIA Zong-chao1, WANG Zi-jian1, LI Xue-ying1, 2*, QIU Hui-min1, HOU Guang-li1, FAN Ping-ping1*. Marine Sediment Particle Size Classification Based on the Fusion of
Principal Component Analysis and Continuous Projection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3075-3080. |
[14] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[15] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
|
|
|
|