|
|
|
|
|
|
Study on Catalytic Combustion of Dioxins From Iron Ore Sintering Flue Gas Over Ce-V-Ti Catalysts by XRD and FTIR |
SHI Qi1, DING Long1, LONG Hong-ming1,2*, CHUN Tie-jun1 |
1. School of Metallurgical Engineering, Anhui University of Technology, Ma’anshan 243032, China
2. Anhui Province Key Laboratory of Metallurgy Engineering & Resources Recycling (Anhui University of Technology), Ma’anshan 243002, China |
|
|
Abstract Dioxins are a group of chlorinated volatile organic pollutants (VOCs) with environmental persistence, biological accumulation and long-term residual properties. It can cause teratogenic, carcinogenic and mutagenic hazards. During the iron ore sintering process, dioxins can be catalytically synthesized from chlorine-containing precursors by Ullman reaction in the alkaline environment or by some catalytic components on the surface of fly ash. Besides, dioxins can be synthesized by de novo through elementary reaction. Iron ore sintering process is one of the most emission sources of dioxins. Physical adsorption technology can only remove pollutants from gas phase to the solid phase and increase the aftertreatment problem of fly ash. Besides, there is a risk of dioxins regeneration under 250~350 ℃. Catalytic combustion can be completely degradation dioxins into CO2,H2O and HCl/Cl2 over catalysts. It is an efficient, energy conservation and low-cost method to avoid secondary pollution. However, the working temperature of traditional catalysts is too high to the end temperature of the sintering flue gas. It is important to improve the catalytic activity at low temperature to achieve high efficiency catalytic combustion of VOCs from iron ore sintering flue gas. As Ce has the 4f orbital coordination effect and Lewis acid site, which plays a crucial role in the activation of C—H and C—Cl bonds in organic pollutants, the anti-chlorine toxicity and combustion activity of the catalystcan be improved by doping transition metal or adjusting the proportion of active components of catalysts. Hence, the effect of different Ce/V weight ratio of Ce-V-Ti catalysts prepared by sol-gel method were studied in this paper. Chlorobenzene was used as the model molecule of dioxins. The phase, specific area, molecular structure and functional groups of Ce-V-Ti catalysts were characterized by XRD, BET,XPS and FTIR. The results show that the catalytic activity of chlorobenzene over Ce-V-Ti catalysts with 15 Wt% Ce and 2.5 Wt% V can achieve CB conversion of 60% at 150 ℃ and 95% at 300 ℃ under the reaction conditions of GHSV=30 000 h-1, 20% O2 and 100 ppm CB. The chemical interaction between the barrier and the active component affected the catalytic activity of catalysts. According to the spectroscopic analysis, the XRD pattern of Ce-V-Ti catalysts was mainly anatase TiO2. The specific surface area was 95.53 m2·g-1, the volume of the pore was 0.29 cm3·g-1,and DBJH was 6.5 nm. Most of the functional groups on the Ce-V-Ti catalysts were C—H groups and O—H, which was expedited the adsorption and desorption of CB. The introduction of V as co-catalytic compositioninto Ce-Ti catalyst promoted the solid solution reaction of Ce element and increased the oxygen vacancy on the surface of the catalyst, which was conducive to improving the catalytic activity of the catalyst. Meanwhile, the oxidation reaction of V in low-price promotes the reduction reaction of Ce.
|
Received: 2019-11-23
Accepted: 2020-04-11
|
Corresponding Authors:
LONG Hong-ming
E-mail: yaflhm@126.com
|
|
[1] Cang D Q, Wei R F, Zhang L L. Iron and Steel, 2014, 49(8): 1.
[2] Long H M, Shi Q, Zhang H L, et al. Journal of Iron & Steel Research International, 2018, 25(4): 1.
[3] Qian L X, Chun T J, Long H M, et al. Process Safety Environmental Protection, 2018, 117: 82.
[4] Zhang Wenrui, Tang Aidong, Xue Jianliang, et al. Spectroscopy and Spectral Analysis, 2016, 36(9): 3075.
[5] Xiao Y H, Cai G H, Dai W, et al. Spectroscopy and Spectral Analysis, 2016, 36(9): 3062.
[6] Yu M F, Li W W, Li X D,et al. Chemosphere, 2016, 156: 383.
[7] Yang S, Zhao H, Dong F, et al. Molecular Catalysis, 2019, 463: 119.
[8] Huang H, Gu Y, Zhao J, et al. Journal of Catalysis, 2015, 326: 54.
[9] Chen Y, Wu Q, Liu K. Chemosphere, 2016, 154: 472.
[10] Watanabe S, Ma X, Song C. Journal of Physical Chemistry C, 2009, 113(32): 14249.
[11] Wu Z, Rondinone A J, Overbury S H. Journal of Physical Chemistry C, 2011, 115(51): 25368.
[12] Zhang H, Fang Y. Journal of Alloys and Compounds, 2019, 781: 201. |
[1] |
LIU Shu-hong1, 2, WANG Lu-si3*, WANG Li-sheng3, KANG Zhi-juan1, 2,WANG Lei1, 2,XU Lin1, 2,LIU Ai-qin1, 2. A Spectroscopic Study of Secondary Minerals on the Epidermis of Hetian Jade Pebbles From Xinjiang, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 169-175. |
[2] |
ZHANG Zhi-wei1, 2, QIU Rong1, 2*, YAO Yin-xu1, 2, WAN Qing3, PAN Gao-wei1, SHI Jin-fang1. Measurement and Analysis of Uranium Using Laser-Induced
Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 57-61. |
[3] |
ZHAO Guo-qiang1, QIU Meng-lin1*, ZHANG Jin-fu1, WANG Ting-shun1, WANG Guang-fu1, 2*. Peak Splitting Method of Ion-Beam-Induced-Luminescence Spectrum Based on Voigt Function Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3512-3518. |
[4] |
CAO Su-qiao1, DAI Hui1*, WANG Chao-wen2, YU Lu1, ZUO Rui1, WANG Feng1, GUO Lian-qiao1. Gemological and Spectral Characteristics of Emeralds From Swat Valley, Pakistan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3533-3540. |
[5] |
DENG Xian-ze1, 2, DENG Xi-guang1, 2*, YANG Tian-bang1, 2, CAI Zhao3, REN Jiang-bo1, 2, ZHANG Li-min1, 2. To Reveal the Occurrence States and Enrichment Mechanisms of Metals in Modules From Clarion-Clipperton Zone in Eastern Pacific by High
Resolution Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2522-2527. |
[6] |
WANG Xin-qiang1, 3, HU Feng1, 3, XIONG Wei2, YE Song1, 3, LI Shu1, 3, GAN Yong-ying1, 3, YIN Shan1, 3, WANG Fang-yuan1, 3*. Research on Raman Signal Processing Method Based on Spatial Heterodyne[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 93-98. |
[7] |
JIAO Qing-liang1, LIU Ming1*, YU Kun2, LIU Zi-long2, 3, KONG Ling-qin1, HUI Mei1, DONG Li-quan1, ZHAO Yue-jin1. Spectral Pre-Processing Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 292-297. |
[8] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[9] |
ZHU Zhi-gao1, LIU Ya1*, YANG Jie1, HU Guo-qing2, 3. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3321-3330. |
[10] |
ZHANG Zhi-qi1, ZHAO Tong1, LIU Ling1, LI Yan1,2*. Spectral Characteristics of Madagascar Agates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3227-3232. |
[11] |
WU Lu-yi, GAO Guang-zhen, LIU Xin, GAO Zhen-wei, ZHOU Xin, YU Xiong, CAI Ting-dong*. Study on the Calibration of Reflectivity of the Cavity Mirrors Used in Cavity Enhanced Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2945-2949. |
[12] |
LI Qing-yuan, LI Jing, WEI Xin, SUN Mei-xiu*. Performance Evaluation of a Portable Breath Isoprene Analyzer Based on Cavity Ringdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2415-2419. |
[13] |
YU Lei, WANG Ya-mei*. The Spectral Characteristics of “Edison” Pearls and Nucleated Pearls With Dyeing Treatment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2626-2632. |
[14] |
LU Wei1, CAI Miao-miao1, ZHANG Qiang2, LI Shan3. Fast Classification Method of Black Goji Berry (Lycium Ruthenicum Murr.) Based on Hyperspectral and Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2196-2204. |
[15] |
KONG De-ming1, 3, SONG le-le1, CUI Yao-yao2*, ZHANG Chun-xiang1, WANG Shu-tao1. Three-Dimensional Fluorescence Spectroscopy Coupled With Parallel Factor and Pattern Recognition Algorithm for Characterization and Classification of Petroleum Pollutants[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2798-2803. |
|
|
|
|