|
|
|
|
|
|
Synthesis, Spectroscopic Characterization and Thermogravimetric Analysis of Cr(Ⅱ), Cu(Ⅱ), Zn(Ⅱ) and Mg(Ⅱ), Captopril Coordination Compounds |
Asma S. Al-Wasidi1, Nawal M. Al-Jafshar1, Amal M. Al-Anazi1, Ahmed M. Naglah2, 3*, Robson F. de Farias4, Claudio Airoldi5, Moamen S. Refat6,7 |
1. Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2. Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
3. Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo 12622-Dokki, Egypt
4. Departamento de Química, Universidade Federal do Rio Grande do Norte, Cx. Postal 1664, 59078-970 Natal, Rio Grande do Norte, Brasil
5. Instituto de Química, Universidade Estadual de Campinas, Brasil
6. Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia
7. Department of Chemistry, Faculty of Science, Port Said, Port Said University, Egypt |
|
|
Abstract In this work, we have reported the synthesis and spectroscopic characterization of captopril (Cap) coordination compounds: Cu(Cap)·2H2O, Cr(Cap)·H2O, Zn(Cap)·3H2O and Mg(Cap)4. Herein, it is worthily mentioned that the FTIR spectroscopic technique was employed to recognized the nature of coordination between captopril ligand and copper, chromium, zinc and magnesium(Ⅱ) metal ions. In view of the infrared spectroscopic tool, the copper(Ⅱ) metal ion coordinated toward captopril drug ligand through sulfur atom of SH group dependent on the absent of stretching vibration band of —SH. Based on this result, the stretching motion of νa(COO) shifts clearly indicates that Cu2+, Cr2+, Zn2+ and Mg2+ the carboxylic group is employed as coordinative site for all compounds as a metal-ligand coordinative bond. As a general behavior, it is verified that the coordination compound thermal stability (considering the release of captopril molecules, not the release of water molecules) is affected by the metal cation radius: minor radius is associated with higher thermal stability, probably due to a higher metal-captopril bond dissociation enthalpy.
|
Received: 2019-08-21
Accepted: 2019-11-29
|
|
Corresponding Authors:
Ahmed M. Naglah
|
|
[1] Refat M S, Kumar D N, de Farias R F. J. Coord. Chem., 2006, 59:1857.
[2] Refat M S, de Farias R F. J. Serbian Chem. Soc., 2006, 71: 1289.
[3] de Farias R F, Airoldi C. Thermochim. Acta, 2004, 413: 111.
[4] de Moura M V F, Matos J R, de Farias R F. Thermochim. Acta, 2004,414:159.
[5] Silva W E, Alves Jr S, de Farias R F. J. Coord. Chem., 2004,57:967.
[6] Martinez L, de Farias R F, Airoldi C. Thermochim. Acta, 2003,395:21.
[7] de Farias R F, Nunes L M, Airoldi C. J. Thermal Anal. Cal., 2003,74:923.
[8] de Farias R F, Martinez L, Airoldi C. Trans. Met. Chem., 2002,27:253.
[9] Atzei D, De Filippo D, Rossi A, et al. Spectrochim. Acta A, 1992,48:911.
[10] Atzei D, Caminiti R, Sadun C, et al. Phosphorus Sulfur Silicon, 1993,79:13.
[11] Atzei D, Sadun C, Pandoffi L. Spectrochim. Acta, 2000, 56: 531. |
[1] |
Lamia A. Albedair. Synthesis, Structural, Spectroscopic Characterization and Biological Properties of the Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Complexes With the Widely Used Herbicide 2,4-Dichlorophenoxyacetic Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1982-1987. |
[2] |
Moamen S. Refat1*, Amnah M. Alsuhaibani2, Mohamed Nagaty1. Infrared Spectroscopy and Morphological Assessments on the Nutritional Value of Prickly Pear Fruit[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 648-653. |
[3] |
Samy M. El-Megharbel1,2*,Moamen S. Refat1,3. Synthesis and Spectroscopic Characterizations of New Mercury(Ⅱ), Cerium(Ⅲ), and Thorium(Ⅳ) Captopril Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3649-3652. |
[4] |
I Rehan1*, K Rehan1,2, S Sultana3, R Muhammad1. Laser Induced Breakdown Spectroscopy for Comparative Quantitative Analysis of Betel Leaves from Pakistan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3295-3302. |
[5] |
Sevil(Porikli) DURDAĞI. Chemical Effect Analyses of 3d Elements by Study of X-Ray Fluorescence Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2630-2637. |
[6] |
SUN Cui-ying, HAN Tong-shuai, GUO Chao, SHENG Wei-nan, LIU Jin*. The Correction Methods for Near Infrared Spectrum of Glucose Aqueous Solution to Reduce the Influence from Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3391-3398. |
[7] |
Cem ZEREN1, Güneş AÇIKGÖZ2*, Süleyman KAHRAMAN3. Using Raman Spectroscopy for Determination Methanol Quantity in Illegal Alcoholic Beverages[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2979-2983. |
[8] |
CHAI A-li1, WANG Yi-kai2, ZHU Fa-di1, SHI Yan-xia1, XIE Xue-wen1, LI Bao-ju1* . Identification of Plant-Pathogenic Fungi Using Fourier Transform Infrared Spectroscopy Combined with Chemometric Analyses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3764-3771. |
[9] |
Amit Kumar Sharma . Spectroscopic Analysis of Organophosphorus Pesticides Using Colorimetric Reactions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 3033-3038. |
[10] |
Tulin BCM, Mehmet YAMAN. Sensitivity Enhancement in Uranium Determination by UV-Visible Spectroscopy Using Ion Imprinted Polymer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1992-1997. |
[11] |
Kyungjin Kim1, Yongkil Ahn2. Color Enhancement by Diffusion of Beryllium in Dark Blue Sapphire[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1623-1628. |
[12] |
Feyzullah TOKAY*, Sema BADAT. Novel and Validated Spectrophotometric Matrix Matching Method for Simple and Rapid Determination of Chromium in Oily Media[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1634-1638. |
[13] |
Fatih Kahrman1*, Cem Ömer Egesel2. Comparison of Spectral and Molecular Analyses for Classification of Long Term Stored Wheat Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1266-1272. |
[14] |
Sanghyup Lee, Kwanyoung Noh, Woongsup Yoon . Analysis of Aluminum Dust Cloud Combustion Using Flame Emission Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(09): 2431-2438. |
[15] |
Daitaro Ishikawa1, Asako Motomura2, Yoko Igarashi2, Yukihiro Ozaki3* . Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera (Compovision) [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(04): 865-869. |
|
|
|
|