|
|
|
|
|
|
Estimation of Metformin Drug for the Diabetes Patients by Simple, Quick and Cheap Techniques within the Formation of Colored Charge Transfer Complexes |
Omar B. Ibrahim1, El-Sayed A. Manaaa2,3, M.M. AL-Majthoub1, Ahmed M. Fallatah1, Abdel Majid A. Adam1, Mha M. Alatibi1, Jehan Y. Al-Humaidi4, Moamen S. Refat1,5* |
1. Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Zip Code 21974, Taif, Saudi Arabia
2. Department of Chemistry, Faculty of Applied Medical Science, Taif University, KSA
3. Nuclear Materials Authority, El-Maadi, Egypt
4. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, KSA
5. Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt |
|
|
Abstract Metformin (Met) is a drug developed for the treatment of patients with type Ⅱ diabetes. Recently, Met estimation in pharmaceutical formulations and human fluids has gained a growing interest. To extend requisite data that can be used to assessment of Met quantitatively based on charge-transfer (CT) complexation, the present study describes the synthesis and characterization of CT complexes that formed between drug Met and the organic π-acceptors picric acid (PA), chloranilic acid (CLA), chloranil (CHL), 7,7’,8,8’-tetracyanoquinodimethane (TCNQ), and dichlorodicyanobenzoquinone (DDQ). The properties of the formed CT complexes were investigated by elemental, spectral (UV-visible, IR, and Raman spectroscopies), thermal (TG) and morphological (SEM) studies. IR results indicated that the complexation of Met with either PA or CLA acceptors occurs through proton transfer interaction, whereas its complexation with CHL, TCNQ, or DDQ acceptors occurs through n→π* interaction.
|
Received: 2018-08-17
Accepted: 2018-09-30
|
|
Corresponding Authors:
Moamen S. Refat
E-mail: msrefat@yahoo.com
|
|
[1] Haas J, Bentov Y. Medical Hypotheses,2017,100:54.
[2] Patel A, Jones S A, Ferro A, et al. Br. J. Cardiol.,2009,16:281.
[3] Stumvoll M, Nurjhan N, Perriello G, et al. N. Eng. J. Med.,1995,333:550.
[4] Physicians’ Desk Reference. 57<sup>th</sup> Edition, Medical Economics Company, New Jersey, USA, 2003.
[5] The Merck Index. Published on CD by Chapman and Hall CRC, Merck and Co Inc., Whitehouse Station, NJ, USA, Monograph No.6001, 1999.
[6] Spacu P, Gheorghiu C. J. Less Common Met.,1968,15(3):331.
[7] Gheorghiu C, Anorg Z. Allg. Chem., 1969, 365: 91.
[8] Spacu P, Gheorghiu C. J. Less Common Met.,1969,18(2):117.
[9] Marchi A, Marvelli L, Cattabriga M, et al. J. Chem. Soc. Dalton Trans., 1999, 1937.
[10] Moghimi A, Khavassi H R, Dashtestani F, et al. J. Mol. Struct.,2011,996:38.
[11] Rao N K, Annapurna M M. JASA, 2007, 3: 43. doi: 10.4324/9780203391150_chapter_3.
[12] Narad S R, Mishra N N, Pandey P, et al. Indian J. Exp. Biol.,1996,34(1):81.
[13] Adam A M A, Sharshar T, Mohamed M A, et al. Spectochim. Acta A,2015,149:323.
[14] Zhu M, Lu I, Yang P, et al. Acta Crystallogr. E,2002,58:m217.
[15] Marchi A, Marvelli L, Cattabriga M, et al. J. Chem. Soc., Dalton Trans., 1999, 12: 1937.
[16] Al-Saif F A, Refat M S. J. Therm. Anal. Calorim., 2013, 111(3): 2079.
[17] Refat M S, Al-Azab F M, Al-Maydama H M A, et al. Spectrochim. Acta A,2015,142:392.
[18] Datta A S, Bagchi (Chattaraj) S, Chakrabortty A, et al. Spectrochim. Acta A,2015,146:119.
[19] Sharma K, Sharma S P, Lahiri S C. Spectrochim. Acta A,2012,92:212.
[20] Kuila D K, Lahiri S C. J. Soln. Chem., 2012, 41: 36.
[21] Kanci Bozolan B, Tunc S, Duman O. J. Lumin., 2014, 155: 198.
[22] Saravanabhavan M, Sathya K, Puranik V G, et al. Spectrochim. Acta A,2014,118:399.
[23] Elqudaby H M, Mohamed G G, El-Din G M G. Spectrochim. Acta A,2014,129:84.
[24] Adam A M A, Refat M S, Saad H A. C.R. Chimie,2015,18:914.
[25] Al-Attas A S, Habeeb M M, Al-Raimi D S. J. Mol. Liq.,2009,148:58.
[26] Seliger J, Zagar V, Gotoh K, et al. Phys. Chem. Chem. Phys.,2009,11(13):2281.
[27] Gaballa A S, Wagner C, Teleb S M, et al. J. Mol. Struct.,2008,876(1-3):301.
[28] Amano M, Yamamura Y, Sumita M, et al. J. Chem. Phys.,2009,130(3):034503.
[29] Dozal A, Keyzer H, Kim H K, et al. Int. J. Antimicrob. Agent,2000,14:261.
[30] Gutmann F, Johnson C, Keyzer H, et al. Charge Transfer Complexes in Biochemistry Systems, Marcel Dekker Inc., 1992.
[31] Khan I M, Ahmad A, Ullah M F. Spectrochim. Acta A,2013,102:82.
[32] Khan I M, Ahmad A, Kumar S. J. Mol. Struct.,2013,1035:38.
[33] Saravanabhavan M, Sathya K, Puranik V G, et al. Spectrochim. Acta A, 2014,118:399.
[34] Elqudaby H M, Mohamed G G, El-Din G M G. Spectrochim. Acta A,2014,129:84.
[35] Murugesan V, Saravanabhavan M, Sekar M. J. Photochem. Photobiol. B,2014,140:20.
[36] Refat M S, Adam A M A, El-Sayed M Y. Arabian J. Chem.,2017,10:S3482.
[37] Almalki A S A, Naglah A M, Refat M S, et al. J. Mol. Liq.,2017,233:292.
[38] Adam A M A, Refat M S, Hegab M S, et al. J. Mol. Liq., 2016, 224: 311.
[39] Adam A M A, Refat M S. J. Mol. Liq., 2016, 219: 377.
[40] Adam A M A, Refat M S, Saad H A, et al. J. Mol. Liq., 2016, 216: 192.
[41] Singh N, Ahmad A. J. Mol. Struct., 2017, 1127: 257.
[42] Zulkarnain I M Khan, Ahmad A, Miyan L, et al. J. Mol. Struct.,2017,1141:687.
[43] Miyan L, Qamar S, Ahmad A. J. Mol. Liq., 2017, 225: 713.
[44] Karmakar A, Singh B. Spectrochim. Acta A, 2017, 179: 110.
[45] Karmakar A, Singh B. J. Mol. Liq., 2017, 236: 135.
[46] Karmakar A, Singh B. J. Mol. Liq., 2017, 247: 425.
[47] Singh N, Khan I M, Ahmad A, et al. J. Mol. Liq.,2016,221:111.
[48] Singh N, Khan I M, Ahmad A, et al. J. Mol. Liq., 2014, 191: 142.
[49] Singh N, Ahmad A. J. Mol. Struct., 2014, 1074: 408.
[50] Singh N, Kahn I M, Ahmed A, et al. Mol. Struct.,2014,1065-1066:74.
[51] Rahman N, Sameen S, Kashif M. J. Mol. Liq., 2016, 222: 944.
[52] Miyan L, Ahmad A. J. Mol. Liq.,2016,219:614.
[53] Naglaha A M, Al-Omar M A, Ibrahim O B, et al. Russ. J. Gen. Chem.,2016,86(4):965.
[54] Refat M S, Saad H A, Adam A M A, et al. Acta Pharmaceutica,2016,66:533.
[55] Refat M S, Saad H A, Adam A M A. Spectrochim. Acta A,2015,141:202.
[56] Adam A M A, Refat M S. J. Mol. Liq.,2015,209:33.
[57] Eldaroti H H, Gadir S A, Refat M S, et al. Spectrochim. Acta A,2013,115:309.
[58] Adam A M A. Spectrochim. Acta, 2014, 127: 107. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[3] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[4] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[5] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[6] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[7] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[8] |
XIA Ming-ming1, 2, LIU Jia3, WU Meng1, 2, FAN Jian-bo1, 2, LIU Xiao-li1, 2, CHEN Ling1, 2, MA Xin-ling1, 2, LI Zhong-pei1, 2, LIU Ming1, 2*. Three Dimensional Fluorescence Characteristics of Soluble Organic Matter From Different Straw Decomposition Products Treated With Calcium Containing Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 118-124. |
[9] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[10] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[11] |
HE Qing-yuan1, 2, REN Yi1, 2, LIU Jing-hua1, 2, LIU Li1, 2, YANG Hao1, 2, LI Zheng-peng1, 2, ZHAN Qiu-wen1, 2*. Study on Rapid Determination of Qualities of Alfalfa Hay Based on NIRS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3753-3757. |
[12] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[13] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[14] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[15] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
|
|
|
|