|
|
|
|
|
|
Spectroscopic Characterization of Turquoise From Nanhuatang, Shiyan, Hubei |
WANG Yi1, YANG Ming-xing1, 2*, DUN Jin-han1, JIANG Yan1, LIU Ling1, YUAN Ye1, 3 |
1. Gemmological Institute, China University of Geosciences, Wuhan 430074, China
2. Gem Testing Center, China University of Geosciences, Wuhan 430074, China
3. Hubei Land Resources Vocational College, Wuhan 430090, China
|
|
|
Abstract The EYS(E-Hu-Shaan) turquoise mining area is a significant turquoise-producing region in China, with the Nanhuatang turquoise deposit located in the Yunyang District of Shiyan City, Hubei Province. This study systematically investigates Nanhuatang turquoise samples using conventional gemmological testing, infrared spectroscopic analysis, Raman spectroscopy, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and UV-visible spectroscopic analysis. The aim is to elucidate the mineralogical and spectroscopic characteristics of these samples and provide data support for provenance tracing.Results indicate that the chemical composition of Nanhuatang turquoise is complex, with significant enrichment in Na, Mg, K, Ca, Sc, Ti, V, Cr, Zn, Mo, and Ba. Notably, the concentrations of Ca, Cr, K, Mo, and Ba are considerably higher than those observed in other turquoise deposits. Rare earth element (REE) analysis reveals a left-dipping chondrite-normalized distribution pattern, characterized by low total REE content (ΣREE), relative depletion of light REEs, and relative enrichment of heavy REEs, with significant fractionation between the two groups. Raman spectral analysis showed that the main absorption peaks were located at 3 470 cm-1 (hydroxyl group stretching vibration) and 1 040 cm-1 (phosphate symmetry stretching vibration). UV-Vis absorption spectroscopy demonstrates that the coloration of turquoise is closely related to its chemical composition.The d—d electron jump of Cu2+ ions (670~690 nm absorption band) is a key factor in the blue colouration of turquoise, while the electron jump of Fe3+ ions is located at 428 nm.Based on the above analysis, the paper reveals the geological features of the Nanhuatang turquoise source area, providing data support for conducting turquoise provenance studies.
|
Received: 2025-01-25
Accepted: 2025-04-30
|
|
Corresponding Authors:
YANG Ming-xing
E-mail: yangc@cug.edu.cn
|
|
[1] CAO Xuan-duo, HU Yun-xu(曹宣铎,胡云绪). Regional Geology of China(中国区域地质), 2021, 20(2): 187.
[2] XIE Jia-tao, HAN Ling, XU Peng, et al(谢家涛, 韩 岭, 徐 鹏,等). Mineral Exploration(矿产勘查), 2022, 13(11): 1656.
[3] LIU Ling, YANG Ming-xing, JIANG Yan, et al(刘 玲,杨明星,姜 炎,等). China Turquoise Mineral Source Research Technology(中国绿松石矿源研究技术). Wuhan: China University of Geosciences Press(武汉:中国地质大学出版社), 2024.
[4] LI Jiang-li, LIU Wen-wen, ZHOU Xiao-ning, et al(李江立,刘文文,周晓宁,等). China Non-metallic Minerals Industry(中国非金属矿工业导刊), 2022, (3): 25.
[5] XU Peng, LI Huan, XIE Jia-tao, et al(徐 鹏, 李 欢, 谢家涛,等). Mineral Exploration(矿产勘查), 2022, 13(5): 548.
[6] Qi Lijian, Yan Weixuan, Yang Mingxing. The Journal of Gemmology, 1998, 26(1): 1.
[7] Farmer V C(法默 V C, 著). Infrared Spectroscopy of Mineral(矿物的红外光谱). Translated by YING Yu-pu, WANG Shou-song, LI Chun-geng, et al(应育浦,汪寿松,李春庚,等译). Beijing: Science Press(北京:科学出版社), 1982.
[8] WEN Hui-lin, YANG Ming-xing, LIU Ling(温慧琳,杨明星,刘 玲). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(4): 1088.
[9] WANG Wan-jun, ZHANG Xiao-dong, ZHAO Yan-qiao(王万军,张晓东,赵彦巧). Conservation and Utilization of Mineral Resources(矿产保护与利用), 2007, (5): 19.
[10] YANG Zhi-qiong, ZHAO Xing-yuan, ZHANG Ling(杨志琼,赵杏媛,章 聆). Experimental Petroleum Geology(石油实验地质),1988, 10(1): 60.
[11] XIONG Yan, CHEN Quan-li, Qi Li-jian, et al(熊 燕,陈全莉,亓利剑,等). Infrared Technology(红外技术), 2011, 33(10): 610.
[12] YANG Chi-yu, TANG Wei-xi, ZHANG Wei-xiao, et al(杨池玉,汤维茜,张维肖,等). Journal of Gems and Gemmology(宝石和宝石学杂志), 2024, 26(1): 57.
[13] CHEN Quan-li, QI Li-jian(陈全莉,亓利剑). Journal of Mineralogy and Petrology (矿物岩石), 2007, 27(1): 30.
[14] XU Duo, ZHOU Zheng-yu(许 多, 周征宇). Journal of Gems and Gemmology(宝石和宝石学杂志), 2024, 26(S1): 13.
|
[1] |
YU Lian-gang1, CAI Yi-tao2, ZHENG Jin-yu3, LIAO Ren-qing4. Study on Mineralogical and Spectroscopic Characteristics of a New
Serpentine From Myanmar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2281-2288. |
[2] |
YU Xuan1, LIU Ji-fu1, YANG Ming-xing1, 2*. Study on Spectroscopy and Locality Characteristics of the Tremolite Jade in Hanyaozi Grassland[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 971-979. |
[3] |
HOU Chao-xin, QU Xin-yue, XIA Su-qin, HAN Hao-chang, WANG Yu-long, ZHANG Hao, LAI Xiao-jing*. Fluorescent Spectroscopic Features of “Trapiche-Like” Sapphire From Mingxi,Fujian Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1103-1108. |
[4] |
TAO Long-feng1, 2, 3, HAO Nan-nan4, JIN Cui-ling2, 3, SHI Miao2, 3, HAN Xiu-li1*. Mineralogical and Spectroscopy Characteristics of the Nephrite in
Yeniugou, Qinghai[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3165-3171. |
[5] |
YU Lian-gang1, ZHENG Jin-yu2. Study on Mineral Composition and Spectroscopy Characteristics of
“African Dulong Jade”[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1676-1683. |
[6] |
CAO Qin-yuan1, SHI Miao2, 3, 4*, MA Shi-yu2. Spectral Characteristics and Analysis of Main and Trace Elements of Scheelite From Xuebaoding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1689-1696. |
[7] |
HE Yan1, TAO Ran1, YANG Ming-xing1, 2*. The Spectral and Technology Studies of Faience Beads Unearthed in Hubei Province During Warring States Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3700-3709. |
[8] |
TAO Long-feng1, 2, LIU Chang-jiang2, LIU Shu-hong3, SHI Miao2, HAN Xiu-li1*. Preparation and Spectral Characteristics of Mn2+ Doped Nephrite Tailings Glass[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2710-2714. |
[9] |
XU Ya-fen1, LIU Xian-yu1*, CHEN Quan-li2, XU Chang3. Study on Mineral Composition and Spectral Characteristics of “Middle East Turquoise”[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2862-2867. |
[10] |
JIA Yu-ge1, YANG Ming-xing1, 2*, YOU Bo-ya1, YU Ke-ye1. Gemological and Spectroscopic Identification Characteristics of Frozen Jelly-Filled Turquoise and Its Raw Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2974-2982. |
[11] |
YU Lian-gang1, LIU Xian-yu2*, CHEN Quan-li3. Gemstone Mineralogical and Spectroscopic Characteristics of
Quartzose Jade (“Mianlv Yu”)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2543-2549. |
[12] |
ZHOU Wu-bang1, QIN Dong-mei2, WANG Hao-tian1, CHEN Tao1, WANG Chao-wen1*. The Gemological, Mineralogical, and Spectral Characteristics of Indian Longdan Stone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1895-1899. |
[13] |
FAN Chun-hui1, 2, YUAN Wen-jing1, XIN Yi-bei1, GUO Chong1, LAN Meng-xin1, JIANG Zhi-yan1. Spectral Characteristics of Dissolved Organic Matter (DOM) in Reclaimed Water Used for Agricultural Irrigation in Water-Deficient Area for the Dual Carbon Targets[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1465-1470. |
[14] |
WEN Hui-lin1, YANG Ming-xing1, 2*, LIU Ling1. Mineralogical and Spectral Characteristics of Alunite From Xiaodonggou Turquoise Deposit, Baihe, Shaanxi[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1088-1094. |
[15] |
ZHAO An-di1, 3, CHEN Quan-li1, 2, 3*, ZHENG Xiao-hua2, LI Xuan1, 3, WU Yan-han1, 3, BAO Pei-jin1, 3. Study on Spectroscopic Characteristics of Turquoise Treated With
Phosphate and Porcelain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1192-1198. |
|
|
|
|