|
|
|
|
|
|
Short Time X-Ray Induced Ca3(BO3)2:Pr3+ Long Afterglow From
Ultraviolet to Red Region |
LIU Run-yao1, SHI Wen-li1, LIAO Xiao-bin1, ZHANG Jia-xu1, FU Xiao-yan1*, LIN Tong-yan1, LIU Ze-wen1, CHEN Nai-hui1, ZHANG Hong-wu2 |
1. College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
2. School of Chemistry and Material Sciences, Ludong University, Yantai 264025, China
|
|
|
Abstract A short-time X-ray-induced long afterglow luminescent material, Ca3(BO3)2:Pr3+, has been developed. The results showed that the phosphor exhibited excellent multiband long afterglow luminescence under X-ray excitation, with the afterglow emission peak primarily located at ultraviolet (270 and 302 nm), green (540 nm), and red (610 nm), corresponding to the 4f5d→3H4, 5, 3P0→3H4, 3P0→3H6 transitions of Pr3+, respectively. More importantly, when X-ray irradiation was applied for 30 s, the intensity of the afterglow after 3 h decay remained 3.9 times that of the background. Even with only 5 s of X-ray irradiation, it can also produce a long afterglow persisting for more than 3 h. In addition, Ca3(BO3)2:Pr3+ exhibited excellent photostimulated performance, producing stable and intense light under periodic irradiation with a 980 nm laser. The thermoluminescence spectra results showed that there were traps with a depth of 0.8 eV, which resulted in excellent long afterglow and photostimulated properties. These results indicated that Ca3(BO3)2:Pr3+ was an excellent X-ray-induced long afterglow luminescent material, which was expected to be used as an in vivo light source for human photodynamic therapy.
|
Received: 2024-09-10
Accepted: 2025-01-07
|
|
Corresponding Authors:
FU Xiao-yan
E-mail: fuxiaoyan@xmut.edu.cn
|
|
[1] Zahedifar M, Sadeghi E, Shanei M M, et al. Journal of Luminescence,2016,171:254.
[2] Homayoni H, Ma L, Zhang J Y, et al. Photodiagnosis and Photodynamic Therapy, 2016, 16: 90.
[3] XU Yong-long, XU Yu, KONG Wei-li, et al(徐永龙, 徐 宇, 孔维丽, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2023,43(9):2910.
[4] Zhang T Z, Zheng H N, Zhang F, et al. Journal of Luminescence,2023,261:119862.
[5] Orsi D, Bernardi D, Giovanardi G, et al. Colloid and Interface Science Communications,2020,39:100327.
[6] Zhou C, Li D H, Lei L, et al. Ceramics International,2023,49(19):31006.
[7] Chen N H, Lin T Y, Liu Z W, et al. Ceramics International,2024,50(1):1891.
[8] Yanagida T, Fujimoto Y, Ito T, et al. Applied Physics Express,2014,7(6):062401.
[9] Shi T H, Sun W J, Qin R X, et al. Advanced Functional Materials,2020,30(24):2001166.
[10] Sun S L, Shao S, Fan W Y, et al. Journal of Luminescence,2023,261:119929.
[11] Luo W, Zhang X T, Huang K F, et al. Journal of Luminescence,2023,254:119512.
[12] Liu Z W, Lin T Y, Chen N H, et al. Journal of Luminescence,2023,263:120002.
[13] Hou D J, Lin H H, Zhang J X, et al. Optik,2017,130:332.
[14] Van Der Voort D, De Rijk J M E, Van Doorn R, et al. Materials Chemistry and Physics,1992,31(4):333.
[15] Jin Y H, Hu Y H, Chen L, et al. Optical Materials,2013,35(7):1378.
[16] Zhang J C, Wang X S, Yao X. Journal of Alloys and Compounds,2010,498(2):152.
[17] Nilova D, Antuzevics A, Krieke G, et al. Journal of Luminescence,2023,263:120105.
[18] He X L, Zhang H, Xie F Y, et al. Ceramics International,2022,48(13):19358.
[19] Liu S Y, Wu M H, Chen W, et al. Journal of Solid State Chemistry,2021,294:121861.
[20] MENG Chun-xia, HUANG Shi-hua, YOU Fang-tian, et al(孟春霞, 黄世华, 由芳田, 等). Acta Physica Sinica(物理学报),2005,54(11):5468.
[21] Fu X Y, Zheng S H, Meng Y F, et al. Journal of Rare Earths,2022,40(4):567.
[22] Targońska S, Wiglusz R J. Ceramics International,2023,49(24):41114.
[23] Hai O, Yang E L, Wei B, et al. Journal of Solid State Chemistry,2020,283:121174.
[24] Li N, Zhang P F, Wang Z Q, et al. Journal of Alloys and Compounds,2021,858:157719.
[25] Zhang X, Guo H J, Shi Q F, et al. Ceramics International,2022,48(24):36201.
|
[1] |
LI Bo1, 2, MA Shu-fang1, 3*, YANG Zhi1, 2, CHENG Rui-si1, 2, LIU Si-min1, 2, WANG Jia-hui1, 2, HAO Xiao-dong1, 3, SHANG Lin1, 3, QIU Bo-cang1, 3, DONG Hai-liang4, HAN Dan4, XU Bing-she1, 4*. Temperature Dependence of InGaAs/GaAs Quantum Well Growth
Characterized by XRD and PL Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1584-1591. |
[2] |
WANG Ce1, JI Zhan-you2. Synthesis and Fluorescence Sensing Properties of Novel Mn-Based MOFs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(03): 658-664. |
[3] |
FAN Bin1, LIU Jun2, QI Shi-mei3, ZHAO Wen-yu1*. Preparation and Luminescent Properties of Green Phosphors LaGaO3∶Tb3+,Sn4+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 65-70. |
[4] |
ZHANG Yong1,2, ZHU Jin-ming1, YANG Li-li1*, Lü Shi-quan1, WU Yan-qun1,CHU Xue-juan1. Effect of Dy3+ on Luminescence Properties of Tb3+ Activated Silicate Oxyfluoride Scintillating Glass[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1412-1419. |
[5] |
HUANG Huan-huan, WANG Qian*, WU Li, LI Meng-xiao. The Luminescence Characteristics of Alumina Ceramic Powder by the Low Temperature Combustion Synthesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2676-2680. |
[6] |
ZHENG Sheng-hui1, FU Xiao-jun1,2,4, LIU Ya-nan1, FU Xiao-yan1*, ZHANG Hong-wu3. Spectrum Properties of Mechanoluminescent Materials Sr2SiO4∶Eu, Dy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2032-2037. |
[7] |
WU Wen1, XUAN Ya-wen2, XIAO Li-na1, YANG Zhi-guang1, ZHU Can-can1, XIE Jian-ping1* . Synthesis and Fluorescence Properties of Rare Earth Ions Co-Doped CaMoO4 [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 32-36. |
[8] |
LIU Yan-zhou, YANG Yan-min*, GUO Yan-ming, ZHANG Lian-shui, MI Chao, LIU Lin-lin . Er3+∶Yb3+ Co-Doped Nanocrystals BaGd2ZnO5 of Up-Conversion Optical Temperature Sensing [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(02): 329-333. |
[9] |
XIAO Yao1, FAN Guang-han1, 2, PI Hui1, XU Yi-qin2, CHEN Zhi-wu1, HE Long-fei2, YU Xiao-peng1, ZHANG Li1, ZHENG Shu-wen1*, ZHANG Tao1*. Preparation and Luminescent Properties of Light Scattering Fluorescent Resin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(12): 3178-3182. |
[10] |
ZHOU Rui1, 2, 3, WEI Ming-jian1, 2, 3*, LIU Jun-xin1,3, ZHANG Bin1, HU Xiao-ting4, SONG Bo1, ZHAO Qiu-yue1 . Luminescence Properties of a Natural Orthoclase [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1631-1635. |
[11] |
YANG Yan-min, SU Xian-yuan, JIAO Fu-yun, LI Zi-qiang, ZHANG Shao-yang . Synthesis and Luminescence Properties of Mg2Y8Si6O26∶Ce3+, Mn2+ Phosphor [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(04): 940-944. |
[12] |
YANG Yan-min1, JIAO Fu-yun1, SU Hong-xin1*, LI Zi-qiang1, LIU Yun-feng2, LI Zhi-qiang1, YANG Zhi-ping1 . Preparation and Up-Conversion Luminescence Dynamic Process of Yb3+/Er3+ Co-Doped BaGd2ZnO5 [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(10): 2637-2641. |
[13] |
WANG Li1,2, LI Jie1,2,3, WANG Hua1,2*, ZHOU He-feng1,2, ZHANG Shu-quan1,2, WANG Shu-hao1,2, XU Bing-she1,2 . Investigation of Synthesis and Luminescent Properties of the Sr2CeO4∶Dy3+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(09): 2492-2495. |
[14] |
ZHU Wei-ling1,2, LIU Xue-wen3,4, WANG Hui2*, ZHENG Kang-cheng4, JI Liang-nian2,4* . Luminescence Dynamics Analysis on Ruthenium Polypyridyl Complexes Bonding to DNA [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(08): 2050-2053. |
[15] |
CHEN Yue-e1, HOU Lan-tian2 . Preparation and Luminescence Properties of Eu3+-Doped Cadmium Aluminium Silicate Glass [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(05): 1205-1208. |
|
|
|
|