|
|
|
|
|
|
Hyperspectral Inversion and Analysis of Heavy Metal Arsenic Content in Farmland Soil Based on Optimizing CARS Combined with PSO-SVM Algorithm |
YUAN Zi-ran, WEI Li-fei*, ZHANG Yang-xi, YU Ming, YAN Xin-ru |
Faculty of Resources and Environmental Science, Hubei University, Wuhan 430002, China |
|
|
Abstract Heavy metal pollution in soil is caused by human activity factors that bring heavy metals into the soil, resulting in deterioration of soil quality and ecological environment. Heavy metals in the soil tend to accumulate, are difficult to be degraded, are highly concealed for long periods of time, and can be enriched by atmospheric circulation and food chains, ultimately threatening human life and health. Hyperspectral remote sensing technology presents a combination of image and spectrum, and can effectively identify the abnormal conditions of different elements in the soil. At present, traditional soil monitoring techniques mainly rely on laboratory-based chemical detection methods such as photometry, chemical analysis, and atomic fluorescence spectroscopy. This kind of method can test the heavy metal content of farmland soil, but the precision depends on a large amount of manpower, material resources and equipment, and its detection efficiency and promotion are lacking. In order to achieve efficient and accurate monitoring of heavy metals in farmland soils. A method of hyperspectral estimation of heavy metal arsenic (As) content in farmland soils based on particle swarm optimization (PSO) and support vector machine (SVM), which use characteristic-enhanced competitive adaptive reweighted sampling (CARS) was proposed. In the characteristic rough selection stage, the measured spectral values from the darkroom are roughly selected by CARS. In the characteristic improvement stage, First Derivative (FD), Gaussian Filtering (GF), Normalization (N) are used to improve features. In the carefully chosen stage, Pearson Correlation Coefficient (PCC) is used to obtain the correlation coefficient between different pre-treated spectral indices and soil heavy metal As. The band whose correlation coefficient has an absolute value greater than 0.6 is selected as a feature band. Finally, PSO is used to optimize the kernel parameter sigma and the normalization parameter gamma used by the SVM. The root mean square error (RMSE) is used as the fitness function, and the optimal parameters of SVM are obtained by iterating the optimal fitness. The soil of Yanwo Town in Honghu City, a typical area of Jianghan plain, was selected as the research object in this paper. The prediction results showed that the decision coefficient (R2) of the verification sets based on PSO-SVM algorithm is 0.982 3, the root mean square error (RMSE) is 0.521 6, and the mean absolute error (MAE) is 0.416 4. The main conclusions are as follows: the PSO algorithm is used to optimize the SVM parameters, and the global optimal solution can be obtained quickly by iteratively updating the individual extremum and the group extremum. Compared with the support vector machine regression (SVMR) and random forests regression (RFR), the prediction accuracy has been greatly improved; The characteristic enhanced CARS algorithm can effectively eliminate irrelevant information and improve correlation. And it selects fewer bands, simplifies the model so that efficiency is greatly improved; It can realize early warning of soil pollution, meet the needs of precision agriculture and provide data basis for ecological restoration of heavy metal contaminated land in the later period.
|
Received: 2018-12-10
Accepted: 2019-05-04
|
|
Corresponding Authors:
WEI Li-fei
E-mail: weilifei2508@163.com
|
|
[1] Huang Y, Chen G, Xiong L, et al. Asian Agricultural Research, 2016, 8(1): 22.
[2] Hu B, Chen S, Hu J, et al. Plos One, 2017, 12(2): e0172438.
[3] YUAN Zhong-qiang, CAO Chun-xiang, BAO Da-ming, et al(袁中强,曹春香,鲍达明,等). Wetland Science(湿地科学), 2016, 14(1): 113.
[4] Gholizadeh A, Luboš Bor vka, Saberioon M M, et al. Soil and Water Research, 2016, 10(4): 218.
[5] Angelopoulou T, Dimitrakos A, Terzopoulou E, et al. Water Air & Soil Pollution, 2017, 228(11): 436.
[6] Tan K, Wang H, Zhang Q, et al. Journal of Soils and Sediments, 2018, 18(5): 2008.
[7] ZHANG Dong, TASHPOLA·Tiyip, ZHANG Fei, et al(张 东,塔西甫拉提·特依拜,张 飞,等). Acta Optica Sinica(光学学报), 2016, 36(3): 282.
[8] WANG Wen-jun, LI Zhi-wei, WANG Can, et al(王文俊,李志伟,王 璨,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2019, 39(5): 1579.
[9] Angelopoulou T, Tziolas N, Balafoutis A, et al. Remote Sens.,2019, 11:676.
[10] Chen T, Chang Q, Clevers J G, et al. Environmental Pollution, 2015, 206: 217.
[11] Wei L, Yuan Z, Zhong Y, et al. Appl. Sci., 2019, 9: 1943.
[12] CHEN Yi-xian, JIANG Xiao-san, WANG Yong, et al(陈怡先,姜小三,王 勇,等). Acta Scientiae Circumstantiae(环境科学学报), 2018, 38(4): 1642.
[13] Sun W, Zhang X, Sun X, et al. Geoderma, 2018, 327: 25. |
[1] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
GAO Wei-ling, ZHANG Kai-hua*, XU Yan-fen, LIU Yu-fang*. Data Processing Method for Multi-Spectral Radiometric Thermometry Based on the Improved HPSOGA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3659-3665. |
[4] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[5] |
MENG Shan1, 2, LI Xin-guo1, 2*. Estimation of Surface Soil Organic Carbon Content in Lakeside Oasis Based on Hyperspectral Wavelet Energy Feature Vector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3853-3861. |
[6] |
AN Bai-song1, 2, WANG Xue-mei1, 2*, HUANG Xiao-yu1, 2, KAWUQIATI Bai-shan1, 2. Hyperspectral Estimation of Soil Lead Content Based on Random Frog Band Selection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3302-3309. |
[7] |
WU Yong-qing1, 2, TANG Na1, HUANG Lu-yao1, CUI Yu-tong1, ZHANG Bo1, GUO Bo-li1, ZHANG Ying-quan1*. Model Construction for Detecting Water Absorption in Wheat Flour Using Vis-NIR Spectroscopy and Combined With Multivariate Statistical #br#
Analyses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2825-2831. |
[8] |
FENG Hai-kuan1, 2, YUE Ji-bo3, FAN Yi-guang2, YANG Gui-jun2, ZHAO Chun-jiang1, 2*. Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2876-2884. |
[9] |
WANG Jing-yong1, XIE Sa-sa2, 3, GAI Jing-yao1*, WANG Zi-ting2, 3*. Hyperspectral Prediction Model of Chlorophyll Content in Sugarcane Leaves Under Stress of Mosaic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2885-2893. |
[10] |
JIN Chun-bai1, YANG Guang1*, LU Shan2*, LIU Wen-jing1, LI De-jun1, ZHENG Nan1. Band Selection Method Based on Target Saliency Analysis in Spatial Domain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2952-2959. |
[11] |
GAO Yu1, SUN Xue-jian1*, LI Guang-hua2, ZHANG Li-fu1, QU Liang2, ZHANG Dong-hui1, CHANG Jing-jing2, DAI Xiao-ai3. Study on the Derivation of Paper Viscosity Spectral Index Based on Spectral Information Expansion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2960-2966. |
[12] |
KONG Bo1, YU Huan2*, SONG Wu-jie2, 3, HOU Yu-ting2, XIANG Qing2. Hyperspectral Characteristics and Quantitative Remote Sensing Inversion of Gravel Grain Size in the North Tibetan Plateau[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2381-2390. |
[13] |
ZHANG Xia1, WANG Wei-hao1, 2*, SUN Wei-chao1, DING Song-tao1, 2, WANG Yi-bo1, 2. Soil Zn Content Inversion by Hyperspectral Remote Sensing Data and Considering Soil Types[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2019-2026. |
[14] |
WANG Hui-min1, 2, YU Lei1, XU Kai-lei1, 2, JIANG Xiao-guang1, 2, WAN Yu-qing1, 2*. Estimation of Salt Content of Saline Soil in Arid Areas Based on GF-5 Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2278-2286. |
[15] |
CAO Yang1, 2, LI Yan-hong1, 2*. Study on the Effects of NO2 Pollution Under COVID-19 Epidemic
Prevention and Control in Urumqi[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1981-1987. |
|
|
|
|