光谱学与光谱分析 |
|
|
|
|
|
Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material |
GUO Yu, JIN Yu-jia, WU Hong-mei, LI Dong-xin |
School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China |
|
|
Abstract Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10~20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt.% to 15.7 Wt.%. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable after repeated use of the supported TiO2 material for 5 times.
|
Received: 2014-06-09
Accepted: 2014-10-12
|
|
Corresponding Authors:
GUO Yu
E-mail: guoyulnut@163.com
|
|
[1] Yu J G, Li Q L, Shu Z. Electrochim. Acta, 2011, 56(18): 6293. [2] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995, 95(1): 69. [3] Liu Y, Sun D Z. Appl. Catal. B-Environ., 2007, 72: 205. [4] Fahim N F, Sekino T. Chem. Mater., 2009, 21: 1967. [5] Wang W G, Yu J G, Xiang Q J, et al. Appl. Catal. B-Environ., 2012, 119: 109. [6] Wen C Z, Jiang H B, Qiao S Z, et al. J. Mater. Chem., 2011, 21(20): 7052. [7] Koparde V N, Cummings P T. ACS Nano, 2008, 2(8): 1620. [8] Xu X Y, Yin D H, Wu S F et al. Ceram. Int., 2010, 36(2): 443. [9] Ho W, Yu J C, Yu J. Langmuir, 2005, 21(8): 3486. [10] LIU Yan, LIANG Pei, GUO Li, et al(刘 艳, 梁 沛, 郭 丽, 等). Acta Chimica Sinica(化学学报), 2005, 63(4): 312. [11] Huang C F, Zhu M Y, Kang L H, et al. Chem. Eng. J., 2014, 242: 69. [12] Zhang H B, Li K, Sun T H, et al. Chem. Eng. J., 2014, 241: 92. [13] Lee S W, Paraguay-Delgado F, Arizabalo R D, et al. Mater. Lett., 2013, 107: 10. [14] Torimoto T, Ito S, Kuwabata S, et al. Environ. Sci. Technol., 1996, 30: 1275. [15] Anderson M R, Mattes B R, Reiss H, et al. Science, 1991, 252: 1412. |
[1] |
ZONG Zhi-fang1, XU Wei-cheng2, CHEN De-peng1*, TANG Gang1, ZHOU Xiao-hui1, DONG Wei1, WU Yu-xi2. Preparation Mechanism of Decylic Acid-Palmitic Acid/SiO2@TiO2
Photocatalytic Phase Change Microcapsules Based on
Multiple Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1306-1313. |
[2] |
QI Dong-li, CHENG Jia, SUN Hui, ZHANG Rui-xin, SONG Jian-yu, QIN Yan-li, LI Hong-da, SHEN Long-hai*. Research on Spectral Characteristics and Photocatalytic Properties of Ball Milled TiO2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3063-3067. |
[3] |
ZHANG Li-sheng. Photocatalytic Properties Based on Graphene Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1058-1063. |
[4] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[5] |
FENG Ai-ming1, WANG Fu-qiang1, ZHANG Hong1*, AN Peng2, LI Yang-hui1, 3, WANG Le1*. Significantly Improved Luminescence Properties of YAG Phosphor via Localized Surface Plasmon Resonance of Nanotitania[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3081-3085. |
[6] |
JI Bang1,2, ZHAO Wen-feng3, DUAN Jie-li4, FU Lan-hui1, MA Li-zhe3, YANG Zhou1*. Spectral Characteristics of Ag3PO4/GO on Nickel Foam and Photocatalytic Degradation of Ethylene Under Visible Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2743-2750. |
[7] |
CHEN Min-nan, TAO Hong*, SONG Xiao-feng, WANG Yi-xin, SHAO Ling, HAN Xiao, LIU Wei, YIN Guang-yi, XIE Xin-yu, YAN Nan-xia. Spectroscopic Analysis of Nitric Acid-Assisted Synthesis of Nitrogen-Defected Graphite Carbon Nitride Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2159-2163. |
[8] |
MA Li-zhe1, JI Bang2, YANG Zhou2*, HUANG Quan-feng1, ZHAO Wen-feng1*. Study of Photocatalytic Degradation of Antibiotics Based on UV-LED Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2894-2900. |
[9] |
YE Ping, WU Miao-miao, WEI Ming, YANG Zhen, HAN Qiao-feng*. Preparation, Characterization and Properties of BiOCl1-xIx and BiOBr1-xIx Solid Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2443-2449. |
[10] |
WANG Lin-na, CHENG Ya-wen, LIU Ke, ZHANG Xiu-ling*. The Stability of Ionic Liquids in DBD Plasma under Atmospheric Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1372-1376. |
[11] |
LIU Jun-shao1, HUANG Lei2, XIE Wen-ju1, LIN Hao1, CHEN Yi-ping2, PAN Hai-bo2*. Preparation of Four Phenoxy Phthalocyanine Zinc/ZnO Composites with in-situ Method by DBU Liquid Phase Catalyst and Its Photocatalytic Selectivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1486-1491. |
[12] |
XUE Juan-qin1, DAI Ji-zhe2, WANG Zhen-xing1, LI Di1. Spectral Characteristic of Graphene Modified Zinc Stannate Materials and It’s Photocatalytic Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1219-1224. |
[13] |
ZHANG Xiao-lei, ZHU Yong*, DING Yi-min, ZHANG Jie. TiO2/Graphene/Ag Composite Structure for Surface-Enhanced Raman Scattering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3441-3445. |
[14] |
MA Hui-yan1,2, ZHOU Dan1, LIU Ju-ming2, ZHANG Qian-cheng1,2*. Preparation and Spectral Characteristics of SO2-4/CeO2-TiO2 Photocatalyst[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3315-3320. |
[15] |
CHEN Jun-yu, JIANG Gui-min, TENG Yuan, CHEN Dong-dong, YAN Ji-kang*, GAN Guo-you. Research on Infrared Spectra of (Fe, N) Doped TiO2 by the Electronegativity Principle[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2305-2310. |
|
|
|
|