光谱学与光谱分析 |
|
|
|
|
|
Analysis of SPR Signal by Using Optimized Savitzky-Golay Filter |
CHEN Shu-wang1, WANG Jun-xing1, SHENG Wei-nan2, 3, LIU Jin2, 3, ZHANG Wen-bin2, ZHOU Peng2, 4* |
1. Institute of Information Science & Engineerning,Hebei University of Science and Technology,Shijiazhuang 050018,China 2. School of Precision Instrument and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China 3. State Key Laboratory of Precision Measuring Technology and Instruments,Tianjin University,Tianjin 300072,China 4. Tianjin Key Laboratory of Biomedical Detection Technology and Instrumentation,Tianjin University,Tianjin 300072,China |
|
|
Abstract The spectrum of surface plasmon resonance shows different amplitudes and peak widths with the effects of resonant intensity and position, so it’s necessary to develop the self-adaptive methods to guarantee the accurate positioning of SPR formant. Based on the optimized Savitzky-Golay filter, this paper presents a method for SPR spectrum, which can optimize the parameters (polynomial degree and window size) according to the characteristics of the real time SPR spectrum, and minimizes the Stein’s unbiased risk estimate of the mean squared error, and it can be quickly solved by Monte-Carlo methods. It is confirmed that SURE can accurately reflect the trends and the results of the true MSE. The experiment measures the SPR signals of sucrose under different concentrations and integration time through the SPR system. By using the proposed method of optimal parameters on the SPR signal filtering, the results show that the repeatability error of the position of SPR formant is smaller compared with the fixed parameters, and does not increase with the addition of noise levels.
|
Received: 2014-04-18
Accepted: 2014-07-14
|
|
Corresponding Authors:
ZHOU Peng
E-mail: zpzp@tju.edu.cn
|
|
[1] Otto A Z. Phys., 1968, 216: 398. [2] Anderson G P, Glaven R H, Algar W R, et al. Analytica Chimica Acta, 2013, 786: 132. [3] Stahelin R V. Molecular Biology of the Cell, 2013, 24(7): 883. [4] Savitzky A, Golay M J E. Analytical Chemistry, 1964, 36(8): 1627. [5] Zuo C, Chen Q, Yu Y, et al. Optics Express, 2013, 21(5): 5346. [6] Hassanpour H. Digital Signal Processing, 2008, 18(5): 728. [7] Quan Q, Cai K Y. Digital Signal Processing, 2012, 22(2): 238. [8] CAI Tian-jing, TANG Han(蔡天净, 唐 瀚). Digital Communication(数字通信), 2011, 1(17): 63. [9] Zimmermann B, Kohler A. Applied Spectroscopy, 2013, 67(8): 892. [10] XIE Jun, PAN Tao, CHEN Jie-mei, et al(谢 军,潘 涛,陈洁梅,等). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(3): 342. [11] Vivó-Truyols G, Schoenmakers P J. Analytical Chemistry, 2006, 78(13): 4598. [12] Li K C. The Annals of Statistics, 1985, 13(4): 1352. [13] Zhang X P, Desai M D. Signal Processing Letters, IEEE, 1998, 5(10): 265. [14] Guo Q, Zhang C. Science Asia, 2012, 38(2): 207. [15] Blu T, Luisier F. Image Processing, IEEE Transactions on, 2007, 16(11): 2778. [16] Ramani S, Blu T, Unser M. IEEE Transactions on Image Processing, 2008, 17(9): 1540. [17] Ramani S, Blu T, Unser M. Proc. of the Thirty-Third IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’08),2008. 905. [18] Krishnan S R, Seelamantula C S. IEEE Transactions on Signal Processing, 2013, 61(2): 380. |
[1] |
ZHANG Liang1, ZHANG Ran2, CUI Li-li3, LI Tao1, GU Da-yong4, HE Jian-an2*, ZHANG Si-xiang1*. Rapid Modification of Surface Plasmon Resonance Sensor Chip by
Graphene Oxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 795-800. |
[2] |
XU Meng-lei1, 2, GAO Yu3, ZHU Lin1, HAN Xiao-xia1, ZHAO Bing1*. Improved Sensitivity of Localized Surface Plasmon Resonance Using Silver Nanoparticles for Indirect Glyphosate Detection Based on Ninhydrin Reaction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 320-323. |
[3] |
ZHENG Yu-xia1, 2, TUERSUN Paerhatijiang1, 2*, ABULAITI Remilai1, 2, CHENG Long1, 2, MA Deng-pan1, 2. Retrieval of Polydisperse Au-Ag Alloy Nanospheres by Spectral Extinction Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3039-3045. |
[4] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[5] |
LIU Xue-mei, WANG Xiao-lin, QIU Zeng-feng, WANG Ya-dong, ZHANG Bin, XU Chao*, YIN Hong-zong*. Surface Plasmon Resonance Sensing Technology is Applied to Small Molecule Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 511-516. |
[6] |
CAO Wen, PAN Ting-ting, DENG Ya-li, LI Mei, HAO Hui, XIA Wei, WANG Ming*. Study on the Surface Plasmon Resonance of Square and Ring/Disc Array Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1345-1350. |
[7] |
LIU Xi-yang1, GAO Nan1*, DU Zhen-hui2, LI Jin-yi3, CHEN Chao1, ZHANG Zong-hua1. Infrared Spectroscopy Quantitative Detection Method Based on Second Order Derivative Spectrum and Characteristic Absorption Window[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1765-1770. |
[8] |
CHENG Long1, JIANG Yong-gang1, HUANG Li-qing2*, ZHANG Yu2, WU Ji2, SUN Hao1, LIU Qi1, WANG Jun3 . Optical Properties of Ag-Al Nanosphere Heterodimer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3470-3475. |
[9] |
LIANG Ai-hui, SHANG Guang-yun, ZHANG Xing-hui, WEN Gui-qing, JIANG Zhi-liang* . A Facile Nanogold Surface Plasmon Resonance Absorption Method for CO Tracing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2576-2578. |
[10] |
SANG Xiao-zhou, ZHANG Da-wei* . Research on the SPR Properties of Copper Thin Film with Regulation of Titanium Dioxide [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2027-2030. |
[11] |
ZHAO An-xin1, 2, TANG Xiao-jun2, ZHANG Zhong-hua2, 3, LIU Jun-hua2. Optimizing Savitzky-Golay Parameters and Its Smoothing Pretreatment for FTIR Gas Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1340-1344. |
[12] |
LI Wen-chao2, MENG Xiao-yun1, PIAO Rui-qi1, ZHAO Jing-jing1, LI Zhi-quan1*, TONG Kai1, GU Er-dan1 . Brand-New Ge20Ga5Sb10S65 Prism Biosensor Based on Inverted SPR [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(02): 571-576. |
[13] |
YE Ling-ling1, LI Ting-sheng1, LUO Yang-he1, 2, WEN Gui-qing1, LIANG Ai-hui1*, JIANG Zhi-liang1* . Determination of Trace Boron Based on Gold Nanorod Plasmonic Resonance Rayleigh Scattering Energy Transfer to the Coordinate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1309-1311. |
[14] |
WANG Yu-tian1, XU Jing1*, LIU Xiao-fei2, CHEN Meng-han1, WANG Shu-tao1 . Study of Determination of Oil Mixture Components Content Based on Quasi-Monte Carlo Method [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1312-1315. |
[15] |
FENG Xin-jie1, MAO Pei-ling1, CHEN Xiao-long1, LUO Yun-han1, 2*, PENG Shui-hua1, CHEN Chao-ying1, WANG Fang1, TANG Jie-yuan1, 2, YU Jian-hui1, 2, ZHANG Jun1, 2, LU Hui-hui1, 2, CHEN Zhe1, 2 . Design and Optimization of Surface Plasmon Resonance Sensor Based on Side Polished Single-Mode Fiber [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1419-1423. |
|
|
|
|