光谱学与光谱分析 |
|
|
|
|
|
A Facile Nanogold Surface Plasmon Resonance Absorption Method for CO Tracing |
LIANG Ai-hui, SHANG Guang-yun, ZHANG Xing-hui, WEN Gui-qing, JIANG Zhi-liang* |
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of Ministry of Education, Guangxi Normal University, Guilin 541004, China |
|
|
Abstract The detection of gas pollutants in atmosphere and indoor air is very important to human health and safety. Monoxide carbon (CO) is a common gas pollutant with high toxicity that mainly comes from the inadequacy oxidization of carbon such as oil, coal and petrol inadequacy combustion, auto-gas and some natural disasters whose limit value in air is lower than 6.0 mg·m-3 in the national standard. Due to its toxicity and uneasy detection, it is one of very dangerous component in the silent killer. Recently, several methods, including infra-red absorption, gas chromatography, potentiometry, Hg replacement, spectrophotometry, I2O5 and PdCl2 nake-eye, semiconductor sensor have been reportedly used for the detection of CO. To our best knowledge, there are no SPR absorption methods for CO, based on the NG SPR absorption. In this paper, the reaction between CO and HAuCl4 was studied with absorption spectrophotometry and transmission electron microscopy (TEM)while a simple and rapid SPR absorption method was developed for the determination of trace CO. In pH 7.2 phosphate buffer solutions, monoxide carbon reduced HAuCl4 to form nanogold (NG) particles with the size of about 45 nm that exhibited surface plasmon resonance (SPR) absorption peak at 540 nm and three energy spectral peaks at 1.70 keV, 2.20 and 9.70 keV for gold element. The analytical conditions were examined, and a pH 7.2 phosphate buffer solution with a concentration of 40 mmoL·L-1 PO3-4, a concentration of 40.0 μg· mL-1 HAuCl4 and a reaction time of 5 min was selected for use. Under the selected conditions, the SPR absorption peak value was linear to CO concentration in the range of 0.2~8.75 μg· mL-1, with a detection limit of 0.1 μg· mL-1 CO. According to the procedure, the influence of coexistent substances on the determination of 1.0 mg·L-1 CO was tested, with a relative error of ±5%. Results indicated that 200 times SO2-3, PO3-4, SO2-4, CO2-3 and NO-3, 100 times Zn2+, K+, BrO-3, Na2S, ethanol, methanol, 80 times Ni2+, Cr3+, Co2+, Ca2+, Mg2+, Fe3+, glucose, Pb2+, Al3+, SeO2-3, Na2S2O3, formaldehyde, 50 times Mn2+ do not interfere with the determination. It showed that this SPR method had good selectivity. The CO content in air samples was determined with the SPR method, with a relative standard deviation (RSD) of 1.8%~4.2%, the SPR method results were agreement with that of the gas chromatography (GC).
|
Received: 2015-02-04
Accepted: 2015-06-16
|
|
Corresponding Authors:
JIANG Zhi-liang
E-mail: zljiang@mailbox.gxnu.edu.cn
|
|
[1] GUO Zu-pei(郭祖培). Environmental Science & Technology(环境科学与技术), 2000, 3: 44. [2] Liu Q, Dong J, Luo Y, et al. RSC Advance, 2014, 4(21): 10955. [3] Boehm G, Bachmann A, Rosskopf J, et al. J. Crystal Growth, 2011, 323(1): 442. [4] Zoltan B, Andras G, Krisztian H, et al. Anal. Chem., 2006, 78(7): 2382. [5] Blondeau-Patissier V, Vanotti M, Pretre T, et al. Procedia Eng., 2011, 25: 1085. [6] Masakatsu S, Akiko Y, Masanobu H. Forensic Sci. Int. 1983, 21: 187. [7] Kim B, Lu Y J, Hannon A, et al. Sens. Actuators B, 2013, 177: 770. [8] Wang R X, Zhang D J, Liu C B. Comp. Mater. Sci., 2014, 82: 361. [9] Ghosh S, Narjinary M, Sen A, et al. Sens. Actuators B, 2014, 203: 490. [10] Chen D, Sun Y, Li J, et al. Foods Sci., 2011, 36: 283. [11] Dean J A. Langes Handbook of Chemistry. 15th ed. New York: MeGraw-Hill, 1999. |
[1] |
WANG Yu1, 2, ZHANG Xian-ke1, 2, TAN Tu1, WANG Gui-shi1, LIU Kun1, SUN Wan-qi3*, QIU Zi-chen4, GAO Xiao-ming1, 2. Research on Moving Observation of Typical Greenhouse Gas Sources in Hefei by Using Off-Axis Integrated Cavity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3293-3301. |
[2] |
YE Zi-yi, LIU Shuang, ZHANG Xin-feng*. Screening of DNA Dyes for Colorimetric Sensing Via Rapidly Inducing Gold Nanoparticles Aggregation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2805-2810. |
[3] |
TANG Ting, PAN Xin*, LUO Xiao-ling, GAO Xiao-jing. Fusion of ConvLSTM and Multi-Attention Mechanism Network for
Hyperspectral Image Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2608-2616. |
[4] |
LI Shi-lun1, LIU Tao2, SONG Wen-min3, WANG Tian-le2, LIU Wei1, CHEN Liang1, LI Zhi-gang2*, FENG Shang-shen1*. Study of Two-Dimensional Ordered Magnetic Co Nanosphere Array Film Construction and Its Optical Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2037-2042. |
[5] |
YUAN Kai-xin, ZHUO Jin, ZHANG Qing-hua, LI Ya-guo*. Study on the Spectral and Laser Damage Resistance of CO2 Laser Modified Sol-Gel SiO2 Thin Films[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1752-1759. |
[6] |
WANG Shu-ying*, YOU De-chang, MA Wen-jia, YANG Ruo-fan, ZHANG Yang-zhi, YU Zi-lei, ZHAO Xiao-fang, SHEN Yi-fan. Experimental Collisional Energy Transfer Distributions for Collisions of CO2 With Highly Vibrationally Excited Na2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1760-1764. |
[7] |
WANG Mei-li1, 2, SHI Guang-hai2*, ZHANG Xiao-hui1, YANG Ze-yu2, 3, XING Ying-mei1. Experimental Study on High-Temperature Phase Transformation of Calcite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1205-1211. |
[8] |
LI Chun-qiang1, 2, GAO Yong-gang1, 2, XU Han-qiu1, 2*. Cross Comparison Between Landsat New Land Surface Temperature
Product and the Corresponding MODIS Product[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 940-948. |
[9] |
LI Qing-jun, SHEN Yan, MENG Qing-hao, WANG Guo-yang, YE Ping, SU Bo*, ZHANG Cun-lin. Terahertz Absorption Characteristics of Potassium Salt Solution Based on Microfluidic Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 363-367. |
[10] |
LI Ai-min1, FAN Meng2*, QIN Guang-duo2, WANG Hai-long2, XU You-cheng2. Water Quality Parameter COD Retrieved From Remote Sensing Based on Convolutional Neural Network Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 651-656. |
[11] |
QIAN Cheng1, WANG Bo1, FEI Xue-lian1, YIN Pan-cheng1, HUANG Bo-tao2, XING Hai-bo1*, HU Xiao-jun1*. Detection of Melamine and Cyromazine in Raw Milk by
Aptamer-Facilitated Gold Nanoparticle-Based Logic Gates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2423-2431. |
[12] |
LIU Xiao-yan1, 2, 3, SHEN Chen3, CUI Wen-xi3, YANG Qian1, 3, YU Ding-feng1, 3*, GAO Hao1, 3, YANG Lei1, 3, ZHOU Yan1, 3, ZHAO Xin-xing3. Evaluation of Various Atmospheric Correction Methods in the Processing of Landsat8/OLI Data in Jiaozhou Bay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2513-2521. |
[13] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[14] |
TAO Long-feng1, 2, SHI Miao2, XU Li-juan2, HAN Xiu-li1*, LIU Zhuo-jun2. Research on Spectral Characteristics and Coloration of Natural Cobalt Spinel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2130-2134. |
[15] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
|
|
|
|