光谱学与光谱分析 |
|
|
|
|
|
Enhancing Stimulated Raman Scattering of Water and Heavy Water Lattice Vibration by Laser Induced Plasma |
SHAN Xiao-ning1, MEN Zhi-wei1, ZHOU Mi1, SUN Cheng-lin1, LI Zuo-wei1, WANG Yi-ding2, LI Zhan-long1, 2* |
1. College of Physics, Jilin University, Changchun 130012, China 2. State Key Laboratory on Integrated Optoelectonics, Jilin University, Changchun 130012, China |
|
|
Abstract Stimulated Raman scattering was studied in water and heavy water using pulse laser at the wavelength of 532nm, not only obtaining the stimulated Raman of O—H and O—D stretching vibration, but also obtaining the stimulated Raman lattice vibration. When the laser energy was 130 mJ, the low frequency Stokes and anti-Stokes 313 cm-1 line of water could be observed; When the laser energy was 160 mJ, the low frequnecy Stokes and anti-Stokes 280 cm-1 line of heavy water could be observed. The results were explained by physics mechanism of laser induced plasma.
|
Received: 2012-12-11
Accepted: 2013-02-20
|
|
Corresponding Authors:
LI Zhan-long
E-mail: zlli@jlu.edu.cn
|
|
[1] Lee S, Kim J, Lee S J, et al. Phys. Rev. Lett., 1997, 69(23): 2038. [2] Salzmann G C, Hallbrucker A, Finney J L, et al. Chem. Phys. Lett., 2006, 429: 69. [3] Chang H C, Huang K H, Yeh Y L, et al. Chem. Phys. Lett., 2000, 326: 93. [4] Li F F, Cui Q L, He Z, et al. J. Chem. Phys., 2005, 123: 174511. [5] Tian Z Q, Chen Y X, Mao B W, et al. Chem. Phys. Lett., 1995, 240: 224. [6] Kwok A S, Chang R K. Opt. Lett., 1992, 17: 1262. [7] Kwok A S, Chang R K. Opt. Lett., 1993, 18: 1597. [8] Xie J G, Ruekgauer T E, Armstrong R L, et al. Opt. Lett., 1993, 18: 340. [9] Pelletier M J, Altkorn R. Anal. Chem., 2001, 73: 1393. [10] Sonntag M D, Klingsporn J M, Garibay L K, et al. J. Phys. Chem., 2012, C116: 478. [11] Barnes P A, Rieckhoff K E, Appl. Phys. Let., 1968, 13: 282. [12] Bloembergen N. IEEE J. Quantum Electron., 1974, 10: 375. [13] Perry M D, Mourou G M. Science, 1994, 264: 917. [14] Brewer R G, Rieckhoff K E. Phys. Rev. Lett., 1964, 13: 334. [15] Kasparian1 J, Wolf J. 2008 Opt. Express, 2008, 16: 466. [16] Yui H, Yoneda Y, Kitamori T, et al. Phys. Rev. Lett., 1999, 82: 4110. [17] Vedadi M, Choubey A, Nomura K, et al. Phys. Rev. Lett., 2010, 105: 014503. [18] Akzbek N, Scalora M, Bowden C M, et al. Opt. Commun., 2001, 191: 353. [19] Men Z W, Li Z W, Zhou M, et al. Phys. Rev. B, 2012, 85: 092101. [20] Walrafenn G E, Chu Y U. J. Phys. Chem., 1995, 99: 11225. [21] Pruzan P, Chervin J C, Wolanin E, et al. J. Raman Spectrosc., 2003, 34: 591. [22] Kovalchuk T, Toker G, Bulatov V, et al. Chem. Phys. Lett., 2010, 500: 242. [23] Warsi Z U A. Fluid Dynamics: Threoretical and Computational Approaches. CRC Press, Boca Raton, FL, 1998. 752. [24] Dlott D D, Fayer M D. J. Chem. Phys., 1990, 92: 3798. [25] Tokmakoff A, Fayer M D, Dlott D D. J. Phys. Chem., 1993, 97: 1901. [26] Tas G, Franken J, Hambir S A, et al. Phys. Rev. Lett., 1997, 78: 4585. [27] Li Z L, Li Z W, Zhou M, et al. Opt. Lett., 2012, 37: 1319. [28] Yui H. Anal. Bioanal. Chem., 2010, 397: 1181. |
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[3] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[4] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[5] |
CHU Bing-quan1, 2, LI Cheng-feng1, DING Li3, GUO Zheng-yan1, WANG Shi-yu1, SUN Wei-jie1, JIN Wei-yi1, HE Yong2*. Nondestructive and Rapid Determination of Carbohydrate and Protein in T. obliquus Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3732-3741. |
[6] |
SUN Wei-ji1, LIU Lang1, 2*, HOU Dong-zhuang3, QIU Hua-fu1, 2, TU Bing-bing4, XIN Jie1. Experimental Study on Physicochemical Properties and Hydration Activity of Modified Magnesium Slag[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3877-3884. |
[7] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[8] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[9] |
YANG Fan1, HAO Liu-cheng1, KE Wei2, LIU Qing1, WANG Jun1, CHEN Min-yuan2, YUAN Huan2*, YANG Ai-jun2, WANG Xiao-hua2, RONG Ming-zhe2. Research on Effect of Laser Incident Angle on Laser-Induced Plasma at Low Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2740-2746. |
[10] |
WU Yong-qing1, 2, TANG Na1, HUANG Lu-yao1, CUI Yu-tong1, ZHANG Bo1, GUO Bo-li1, ZHANG Ying-quan1*. Model Construction for Detecting Water Absorption in Wheat Flour Using Vis-NIR Spectroscopy and Combined With Multivariate Statistical #br#
Analyses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2825-2831. |
[11] |
ZHU Yu-chen1, 2, WANG Yan-cang3, 4, 5, LI Xiao-fang6, LIU Xing-yu3, GU Xiao-he4*, ZHAO Qi-chao3, 4, 5. Study on Quantitative Inversion of Leaf Water Content of Winter Wheat Based on Discrete Wavelet Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2902-2909. |
[12] |
YE Wen-chao1, LUO Shui-yang1, LI Jin-hao1, LI Zhao-rong1, FAN Zhi-wen1, XU Hai-tao1, ZHAO Jing1, LAN Yu-bin1, 2, DENG Hai-dong1*, LONG Yong-bing1, 2, 3*. Research on Classification Method of Hybrid Rice Seeds Based on the Fusion of Near-Infrared Spectra and Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2935-2941. |
[13] |
CHEN Chao-yang1, 2, LIU Cui-hong1, 2, LI Zhi-bin3, Andy Hsitien Shen1, 2*. Alexandrite Effect Origin of Gem Grade Diaspore[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2557-2562. |
[14] |
LI Hui-ji1, LI Yan-wen1, YU Wei-wei2, HUANG Ru-meng1, SUN Hai-jie1*, PENG Zhi-kun3*. Theoretical Study on the Structures and IR Spectra of Hydration of Arsenates and Iron Arsenates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2090-2094. |
[15] |
ZHANG Jing, GUO Zhen, WANG Si-hua, YUE Ming-hui, ZHANG Shan-shan, PENG Hui-hui, YIN Xiang, DU Juan*, MA Cheng-ye*. Comparison of Methods for Water Content in Rice by Portable Near-Infrared and Visible Light Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2059-2066. |
|
|
|
|