|
|
|
|
|
|
Research Progress on the Application of Metasurfaces in Terahertz
Super-Resolution Imaging |
LI Guang-ming1, 2, 3, GE Hong-yi1, 2, 3, JIANG Yu-ying1, 2, 4*, ZHANG Yuan1, 2, 3*, SUN Qing-cheng1, 2, 3, ZHENG Hui-fang1, 2, 3, LI Xing1, 2, 3 |
1. Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
2. Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
3. School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
4. School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
|
|
|
Abstract Terahertz (THz) radiation, characterized by high penetrability, low energy, and unique fingerprint spectra, has extensive applications in nondestructive testing, biomedical imaging, security screening, and communications. However, traditional THz imaging systems are constrained by the long wavelength of THz waves and the scarcity of natural materials with high transmittance in this spectral range, resulting in limitations in resolution and sensitivity. These shortcomings hinder their ability to meet the technological demands of high-precision and trace-level detection.Metasurfaces, composed of subwavelength-scale structural units, enable precise control of THz wave propagation by modulating electromagnetic waves' phase, amplitude, and polarization. This capability allows them to overcome the diffraction limit of conventional optical systems, offering a viable solution for THz super-resolution imaging. This paper reviews the latest advancements in THz super-resolution imaging using metasurfaces, focusing on various structural types' design principles and application performance. Resonant structures enhance local fields at specific frequencies, enabling high-contrast imaging. Gradient-phase structures guide THz waves with precision through phase gradients. Multilayer metasurfaces leverage stacked-layer designs to achieve complex phase and amplitude modulation. Subwavelength gratings offer superior wavefront control, improving super-resolution imaging. Meanwhile, metamaterial reflective arrays achieve high-resolution wavefront modulation without needing lenses. Key design considerations for high-efficiency THz metasurfaces include structural design strategies, material selection, and precise phase and amplitude modulation techniques. The potential of optimized designs and novel materials in enhancing THz imaging performance and expanding its applications is also analyzed. Future research directions are proposed to address existing challenges in THz metasurface technology, such as complex fabrication processes, limited system compatibility, and material response constraints. These include: (1) developing novel low-loss materials to improve transmission efficiency and phase control; (2) integrating artificial intelligence to optimize metasurface design and performance; and (3) advancing system integration and miniaturization to facilitate the development of portable THz imaging devices for applications in high-precision imaging, medical diagnostics, and security screening. With continuous progress in new materials, intelligent design methodologies, and miniaturization technologies, THz metasurfaces are expected to achieve broader applications. Their advancement will drive the widespread adoption of high-precision imaging and portable devices, fostering new opportunities for scientific discovery and industrial innovation.
|
Received: 2024-11-19
Accepted: 2025-03-24
|
|
Corresponding Authors:
JIANG Yu-ying, ZHANG Yuan
E-mail: jiangyuying11@163.com; zy_haut@163.com
|
|
[1] LU Xue-jing, GE Hong-yi, JIANG Yu-ying, et al(卢雪晶, 葛宏义, 蒋玉英, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(11): 3330.
[2] Strg M, Swiderski W. Composite Structures, 2023, 306: 116588.
[3] Yan Z, Zhu L G, Meng K, et al. Trends in Biotechnology, 2022, 40(7): 816.
[4] Afsah-Hejri L, Hajeb P, Ara P, et al. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1563.
[5] Nagatsuma T, Ducournau G, Renaud C C. Nature Photonics, 2016, 10(6): 371.
[6] Hillger P, Grzyb J, Jain R, et al. IEEE Transactions on Terahertz Science and Technology, 2019, 9(1): 1.
[7] Tan L, Wang D, Xu K D. Materials & Design, 2024,244: 113217.
[8] Chen H T, Taylor A J, Yu N. Reports on Progress in Physics, 2016, 79(7): 076401.
[9] Abdelraouf O A M, Wang Z, Liu H, et al. ACS Nano, 2022, 16(9): 13339.
[10] Beruete M, Jáuregui‐López I. Advanced Optical Materials, 2020, 8(3): 1900721.
[11] Zang X, Yao B, Chen L, et al. Light: Advanced Manufacturing, 2021, 2(2): 148.
[12] Hale L L, Siday T, Mitrofanov O. Optical Materials Express, 2023, 13(11): 3068.
[13] Hao X, Chen Y, Liu M, et al. Advanced Optical Materials, 2024, 12(15): 2302975.
[14] Yang Q, Kruk S, Xu Y, et al. Advanced Functional Materials, 2020, 30(4): 1906851.
[15] Ako R T, Upadhyay A, Withayachumnankul W, et al. Advanced Optical Materials, 2020, 8(3): 1900750.
[16] Ren Y, Wang X, Xiao C. Optics Express, 2023, 31(5): 8081.
[17] Cen W, Lang T, Wang J, et al. Applied Surface Science, 2022, 575: 151723.
[18] Jia R, Gao Y, Xu Q, et al. Advanced Optical Materials, 2021, 9(2): 2001403.
[19] Wan M, Healy J J, Sheridan J T. Optics & Laser Technology, 2020, 122: 105859.
[20] Heimbeck M S, Everitt H O. Advances in Optics and Photonics, 2020, 12(1): 1.
[21] Erçağlar V, Hajian H, Serebryannikov A E, et al. Optics Letters, 2021, 46(16): 3953.
[22] Ji Y, Jiang X, Fan F, et al. Optics Express, 2023, 31(2): 1269.
[23] Du Z, He C, Xin J, et al. Optics Express, 2023, 32(1): 248.
[24] Chen J, Huang S X, Chan K F, et al. Nature Communications, 2025, 16(1): 363.
[25] Yao Z, Yuan X, Lang Y, et al. Terahertz Functional Devices Based on Multilayer Flexible Metasurface. 2024 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2024.
[26] Zhu J, Xiong J. Measurement, 2023, 220: 113302.
[27] Masyukov M, Vozianova A, Grebenchukov A, et al. Scientific Reports, 2020, 10(1): 3157.
[28] Tian Y, Jing X, Gan H, et al. Frontiers of Physics, 2020, 15: 62502.
[29] Wang Y M, Fan F, Zhao H J, et al. Journal of Physics D: Applied Physics, 2024, 57(23): 235101.
[30] Valynets N I, Paddubskaya A G, Sysoev V I, et al. Nanotechnology, 2023, 34(18): 185702.
[31] Huang T J, Tang H H, Tan Y, et al. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3358.
[32] Li K, Wang D, Rong L, et al. Design and Simulation Comparison of Terahertz Surface Wave Based on Grating Coupling Method. Holography, Diffractive Optics, and Applications XII. SPIE, 2022, 12318: 321.
[33] Ahmadi A, Ghadarghadr S, Mosallaei H. Opt. Express, 2010, 18(1):123.
[34] Headland D, Niu T, Carrasco E, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8500918.
[35] Xu W, Xie L, Ying Y. Nanoscale, 2017, 9(37): 13864.
[36] Yachmenev A E, Lavrukhin D V, Glinskiy I A, et al. Optical Engineering, 2020, 59(6): 061608.
[37] Naghdehforushha S A, Moradi G. Optik, 2018, 168: 440.
[38] Gao F, Jiang M, Hou S. Sensors, 2024, 24(16): 5419.
[39] Li N, Mei J, Gong D, et al. Optics Communications, 2022, 521: 128581.
[40] Guan S, Cheng J, Tan Z, et al. Optics and Lasers in Engineering, 2023, 169, 107694.
[41] Hao D, Liu J, Zou P, et al. Laser & Photonics Reviews, 2024, 18(9): 2301210
[42] Xue J, Zhang Y, Guang Z, et al. Optics & Laser Technology, 2025, 180: 111387.
[43] Sharma P, Sen S, Walia S, et al. Applied Materials Today, 2024, 40: 102400.
[44] Harumi A, Endo K, Suzuki T. Optics Express, 2021, 29(10): 14513.
[45] Zhu J, Li C, Fang B, et al. Optics & Laser Technology, 2024, 176: 110978.
[46] Zhou Q, Yang C, Lin P, et al. Nano Letters, 2024, 24(35): 11036.
[47] Lan F, Wang L, Zeng H, et al. Light: Science & Applications, 2023, 12(1): 191.
[48] So S, Mun J, Park J, et al. Advanced Materials, 2023, 35(43): 2206399.
[49] McDonnell C, Deng J, Sideris S, et al. Nature Communications, 2021, 12(1): 30.
[50] Guo T, Argyropoulos C. Optics Letters, 2016, 41(23): 5592.
[51] Farhad A, Pyun J Y. Sensors, 2023, 23(11): 5034.
[52] Ding Z, Su W, Ye L, et al. Chinese Journal of Physics, 2024, 90: 519.
[53] Huang Y, Liu X, Liu M, et al. Optics Letters, 2024, 49(10): 2733.
[54] Xiao D, Xu L, Su D, et al. Radio Science, 2024, 59(7): e2024RS007968.
|
[1] |
ZHANG Yuan1, 2, 3, 4, ZHOU Wen-hui1, 2, 3, GE Hong-yi1, 2, 3*, JIANG Yu-ying1, 2, 4, GUO Chun-yan1, 2, 3, WANG Heng1, 2, 3, WEN Xi-xi1, 2, 3, WANG Yu-xin3. Research on Defect Detection of GFRP Composites Based on Terahertz Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1874-1881. |
[2] |
JIANG Ming-yang, LI Jiu-sheng*, GUO Feng-lei. Multifunctional Terahertz Metasurface Controlled by Left/Right
Circularly Polarized Waves[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3371-3377. |
[3] |
JIANG Yu-ying1, 2, 4, WEN Xi-xi1, 2, 3, GE Hong-yi1, 2, 3*, CHEN Hao1, 2, 3, JIANG Meng-die1, 2, 3, ZHAO Yang4, WANG Jia-hui4. Research Progress of Terahertz Technology in Defect Detection of
Composite Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2717-2726. |
[4] |
DAI Lin-lin1, SU Jin1, KOU Fei-fei1*, QI Li-mei1, 2*, SUN Dan-dan1, SHI Dan1. Review of the Terahertz Metamaterial Devices Based on the
CiteSpace Software[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 910-917. |
[5] |
CHEN Shan-shan, ZHANG Bo*. Photo-Excited Frequency Terahertz Switch Based on Various Composite Metamaterial Structures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 331-335. |
[6] |
LI Yan-hong1, LIAO Meng-meng2, FENG Jie3. Design and Implementation of a THz Anisotropic Metamaterial
Polarization Regulator[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 372-379. |
[7] |
ZHANG Chun-yu1, 2, ZHOU Jin-song1, 2, HE Xiao-ying1, JING Juan-juan1, 2, FENG Lei1*. Design of Imaging Spectrometer Based on Metasurface[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 225-229. |
[8] |
LU Xue-jing1, 2, GE Hong-yi2, 3, JIANG Yu-ying2, 3, ZHANG Yuan3*. Application Progress of Terahertz Technology in Agriculture Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3330-3335. |
[9] |
YANG Jun1,QI Li-mei1*,WU Li-qin2,LAN Feng3,LAN Chu-wen4,5,TAO Xiang1,LIU Zi-yu1. Research Progress of Terahertz Metamaterial Biosensors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1669-1677. |
[10] |
XIE Ming-zhen1, ZHANG Yang2, FU Wei-ling2*, HE Jin-chun1,3*. Microfludic Refractive Index Sensor Based on Terahertz Metamaterials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1039-1043. |
[11] |
HUO Shuai-nan1, 2, LI Bin2, 3*, ZHANG Li-qiong2, QI Li-mei4, WANG Ming-wei1. Study on Terahertz Spectroscopy Detection of Low Concentration Imidaclopridon Metamaterials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1044-1049. |
[12] |
WANG Yue-e1, 2, LI Dong-xia2, LI Zhi2, 3*, HU Fang-rong2*. Identification of Vitamin B Using a Quad-Peak Terahertz Metamaterials Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1785-1790. |
[13] |
LUO Na1, 2, WANG Dong1, 2, WANG Shi-fang1, 2, HAN Ping1, 2*. Progress in Terahertz Technique for Quality Inspection of Agro-Food Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(02): 349-356. |
[14] |
ZHANG Jin1, WANG Jie1, SHEN Yan3, ZHANG Jin-bo4, CUI Hong-liang1,2*, SHI Chang-cheng2*. Wavelet-Based Image Fusion Method Applied in the Terahertz Nondestructive Evaluation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3683-3688. |
[15] |
LONG Yuan1, 2, 3, ZHAO Chun-jiang1, 2, 3, 4, 5, LI Bin1, 2, 3*. The Preliminary Research on Isolated Leaf Moisture Detection Using Terahertz Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3027-3031. |
|
|
|
|