|
|
|
|
|
|
Study of Near-Infrared Fingerprints of Ganoderma Lucidum in Different Growth Environments |
TAN Fang-ping1, LU Tong-suo1, 2* |
1. Tibet University, Lhasa 850000, China
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
|
|
|
Abstract Ganoderma lucidum (G. lucidum), a precious fungus with a long history of medicinal use, faces challenges in authenticity identification and quality evaluation due to its diverse species and varying growth environments. This study integrates near-infrared spectroscopy (NIRS)and spectral preprocessing methods to analyze G. lucidum samples from different growthenvironments in the market. By collecting and analyzing NIRS data of five G. lucidum samples, spectral preprocessing methods—including baseline correction (first-/second-order derivatives, continuous wavelet transform (CWT)) and scattering correction (multiplicative scatter correction (MSC) , standard normal variate transformation (SNV))—were applied to eliminate background noise. This enhanced the accuracy of spectral data in reflecting the intrinsic characteristics of G. lucidum, with a focus on the distribution of characteristic absorption peaks and hydrogen-containing groups in the NIRS region. The results revealed significant differences in NIRS between the stipes and pilei of G. lucidum from distinct growth environments, exhibiting unique characteristic absorption peaks and hydrogen-containing group distributions. These absorption peaks were closely associated with active components in G. lucidum, where environmental factors (e. g., temperature, humidity, light intensity) and cultivation conditions (e. g., substrates such as sawdust, wheat bran, and gypsum) were identified as key determinants of active component synthesis and distribution. Environmental factors influence growth cycles and metabolic activities, while cultivation substrates affect growth rates, mycelial vigor, biomass, and morphological parameters (stipe length, stipe diameter, pileus diameter, pileus thickness). This method provides an effective approach for the authenticity identification of G. lucidum. Its implementation significantly enhances quality control of G. lucidum products, facilitates comprehensive quality evaluation, aids in eliminating inferior products in the market, and ensures consumers select appropriate G. lucidum varieties to meet market demands.
|
Received: 2024-10-07
Accepted: 2025-02-11
|
|
Corresponding Authors:
LU Tong-suo
E-mail: lutongsuo@163.com
|
|
[1] Chrysostomou P P, Freeman E, Murphy M M, et al. Frontiers in Toxicology, 2024, 6: 1469348.
[2] JIAO Hui-ping, LIAN Hua, LI Run-tian, et al(焦慧平,莲 花,李润甜,等). Chemical Research and Application(化学研究与应用), 2025, 37(2): 439.
[3] Di Rita V, Moceri A, Schumer M, et al. Journal of the International Neuropsychological Society, 2023, 29(s1): 466.
[4] WU Yuan-lang(吴远浪). Grain Oil and Feed Technology(粮油与饲料科技), 2024, (5): 207.
[5] SHAO Chen-yang, ZHAO Yi-mo, LU Li-li, et al(邵晨阳, 赵一墨, 鹿莉莉, 等). Chemical Bulletin(化学通报), 2024, 87(8): 898.
[6] LIU Zi-yu, HOU Yu-wen, XU Qiang, et al(刘子毓, 侯玉文, 许 强, 等). Electro-Optics Technology Application(光电技术应用), 2012, 27(1): 25.
[7] WANG Jian-wei, YE Sheng(王建伟, 叶 升). China Condiment(中国调味品), 2021, 46(9): 171.
[8] Guzzi D, Baldi M, Bianchi T, et al. Engineering Proceedings, 2023, 51(1): 31.
[9] Ning S Y, Cao J W, Liu X Y, et al. Crystals, 2022, 12(7): 910.
[10] Jiang Z W, Zhong L J, Xue J J, et al. Microchemical Journal, 2023, 193.
[11] Liu Y, Lan W L, Wang Y H, et al. International Journal of Medicinal Mushrooms, 2023, 25(6): 87.
[12] CHEN Pu, YANG Jian, CHU Xiao-li, et al(陈 瀑, 杨 健, 褚小立, 等). Chinese Journal of Analytical Chemistry(分析化学), 2024, 52(9): 1213.
[13] Santos D T E C, C K P, Naara A A, et al. Food Research International, 2022, 161: 111759.
[14] Stevanovic M M, VuKomanovic M, Milenkovic M, et al. Frontiers in Materials, 2021, 8: 748813.
[15] Gao R, Qi P H, Zhang Z H. Signal Processing, 2021, 181: 107893.
[16] LIN Guo-wei, WANG Ming-wei, LI Yan, et al(林国伟, 王铭巍, 李 岩, 等). Science Technology and Engineering(科学技术与工程), 2023, 23(25): 10975.
[17] Peyman A, Ghoreishi M, Babaei L, et al. Journal of Refractive Surgery, 2024, 40(12): e956.
[18] Yang Z J, Murat C, Nakano H, et al. Marine Pollution Bulletin, 2023, 197: 115700.
[19] Zhou X, Lu Y C, Hua Y X, et al. Physics in Medicine and Biology, 2023, 68(7): 075011.
[20] LIU Xin-zhuo, DENG Ling-li, WANG Wan-lan, et al(刘新卓, 邓伶莉, 王婉兰, 等). Journal of Xiamen University (Natural Science)[厦门大学学报(自然科学版)], 2016, 55(4): 564.
[21] Aishima K. Japan Journal of Industrial and Applied Mathematics, 2023, 40(1): 691.
[22] GU Li, FAN Bao-lin, SUN Qian-qian, et al(谷 丽, 范宝琳, 孙倩倩, 等). Synthetic Fibers in China(合成纤维), 2024, 53(6): 54.
[23] Amer M M, El-Khateeb B Z. Luminescence: the Journal of Biological and Chemical Luminescence, 2024, 39(7): e4815.
[24] HE Jin-zhe, SHAO Ping, SUN Pei-long(何晋浙, 邵 平, 孙培龙). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(5): 1202.
[25] LIU You-ju, YANG Qing-ci, YANG Zeng-gang(刘有菊, 杨庆辞, 杨增刚). Journal of Baoshan University(保山学院学报), 2017, 36(5): 9.
[26] Jia Z X, Shi C, Yang X T, et al. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(6): 4644.
|
[1] |
LI Wen-wen, YAN Fang*, LIU Yang-shuo. A Mechanistic Analysis of Terahertz Absorption Peak Formation in
Benzoic Acid and Sorbic Acid Mixtures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1848-1856. |
[2] |
GE Qing, LIU Jin*, HAN Tong-shuai, LIU Wen-bo, LIU Rong, XU Ke-xin. Influence of Medium's Optical Properties on Glucose Detection
Sensitivity in Tissue Phantoms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1262-1268. |
[3] |
LI Xin-ting, ZHANG Feng, FENG Jie*. Convolutional Neural Network Combined With Improved Spectral
Processing Method for Potato Disease Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 215-224. |
[4] |
LI Chen-xi1, SUN Ze-yu1, 2, ZHAO Yu2*, YIN Li-hui2, CHEN Wen-liang1, 3, LIU Rong1, 3, XU Ke-xin1, 3. The Research Progress of Two-Dimensional Correlation Spectroscopy and Its Application in Protein Substances Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 1993-2001. |
[5] |
LIU Yu-juan1, 2, 3 , LIU Yan-da1, 2, 3, SONG Ying1, 2, 3*, ZHU Yang1, 2, 3, MENG Zhao-ling1, 2, 3. Near Infrared Spectroscopic Quantitative Detection and Analysis Method of Methanol Gasoline[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1489-1494. |
[6] |
CAI Yu1, 2, ZHAO Zhi-fang3, GUO Lian-bo4, CHEN Yun-zhong1, 2*, JIANG Qiong4, LIU Si-min1, 2, ZHANG Cong-zi4, KOU Wei-ping5, HU Xiu-juan5, DENG Fan6, HUANG Wei-hua7. Research on Origin Traceability of Rhizoma Dioscoreae Based on LIBS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 138-144. |
[7] |
CAO Yu-qi2, KANG Xu-sheng1, 2*, CHEN Piao-yun2, XIE Chen2, YU Jie2*, HUANG Ping-jie2, HOU Di-bo2, ZHANG Guang-xin2. Research on Discrimination Method of Absorption Peak in Terahertz
Regime[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3058-3062. |
[8] |
XU Lu1, CHEN Yi-yun1, 2, 3*, HONG Yong-sheng1, WEI Yu1, GUO Long4, Marc Linderman5. Estimation of Soil Organic Carbon Content by Imaging Spectroscopy With Soil Roughness[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2788-2794. |
[9] |
YANG Jie-kai1, GUO Zhi-qiang1, HUANG Yuan2, 3*, GAO Hong-sheng1, JIN Ke1, WU Xiang-shuai2, YANG Jie1. Early Classification and Detection of Melon Graft Healing State Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2218-2224. |
[10] |
HE Nian, SHAN Peng*, HE Zhong-hai, WANG Qiao-yun, LI Zhi-gang, WU Zhui. Study on the Fractional Baseline Correction Method of ATR-FTIR
Spectral Signal in the Fermentation Process of Sodium Glutamate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1848-1854. |
[11] |
XU Bo1, XU Tong-yu1, 2*, YU Feng-hua1, 2, ZHANG Guo-sheng1, FENG Shuai1, GUO Zhong-hui1, ZHOU Chang-xian1. Inversion Method for Cellulose Content of Rice Stem in Northeast Cold Region Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1775-1781. |
[12] |
LI Qing-bo1, BI Zhi-qi1, SHI Dong-dong2. The Method of Fishmeal Origin Tracing Based on EDXRF Spectrometry Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 745-749. |
[13] |
LI Xin-xing1, LIANG Bu-wen1, BAI Xue-bing1, LI Na2*. Research Progress of Spectroscopy in the Detection of Soil Moisture Content[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3705-3710. |
[14] |
LIU Cui-mei, HAN Yu, JIA Wei, HUA Zhen-dong. Rapid Qualitative Analysis of New Psychoactive Substances by Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3925-3929. |
[15] |
LÜ Mei-rong1, REN Guo-xing1, 2, LI Xue-ying1, FAN Ping-ping1, LIU Jie1, SUN Zhong-liang1, HOU Guang-li1, LIU Yan1*. The Effect of Spectral Pretreatment on the LSSVM Model of Nitrogen in Intertidal Sediments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2409-2414. |
|
|
|
|