|
|
|
|
|
|
Spectroscopic Techniques in the Study of Electron Transfer in Flavin Systems |
WAN Hao-yu1, ZHOU Zi-xiong1, WU Jun-biao1, Jörg Matysik2, WANG Xiao-jie1* |
1. Department of Biology and Chemistry, College of Art and Science, National University of Defense Technology, Changsha 410073, China
2. Institut für Analytische Chemie, Universität Leipzig, 04103 Leipzig, Germany
|
|
|
Abstract Flavins are widely present in organisms and active centers of many electron-transfer reactions. Therefore, they play an important role in biological electron transport chains. Electron transfer caused by light excitation of flavins is the initial step of many living processes. Cryptochromes containing flavin as a cofactor undergo a series of electron-transfer steps to form spin-correlated radical pairs (SCRP) after light excitation. Cryptochromes are considered the most likely candidate for an avian magnetoreceptor, which initiated research on the dynamics of the electron transfer in the flavin system, especially on their spin dynamics. The study of electron transfer and related processes in flavoproteins will allow one to understand biochemical mechanisms and reveal the influencing factors of various living processes. Therefore, numerous research methods, including UV-Vis spectroscopy, fluorescence spectroscopy, transient absorption spectroscopy, electron paramagnetic resonance, photochemical induced dynamic nuclear polarization (photo-CIDNP) and other spectroscopic techniques. We review studies of domestic and foreign scholars on electron transfer of flavin systems, and discuss the recent progress in various major research methods. UV-Vis spectroscopy is mainly used to study electronic excitation, spin-dynamics, and electron transfer in the flavin systems. UV-Vis spectroscopy might identify the groups involved in electron transfer and perform quantitative analysis combined with theoretical predictions. Fluorescence spectroscopy can identify electronically excited species, observe the rise and decay of, for example, flavin and semiquinone intermediates during the reaction course, and identify their redox and protonation states. Transient optical spectroscopy is suitable for capturing short-lived species that appear in the reaction process. In particular, introducing femtosecond pump-probe technology greatly shortened the time-resolution of observation and can distinguish between singlet- and triplet-born radical pair dynamics. Photo-CIDNP nuclear magnetic resonance (NMR) allows -to observe the electron-nuclear spin dynamics directly. Such direct access to the bio-geomagnetic operational mechanism might pave the way for practical applications. Magnetic field-dependent photo-CIDNP NMR reveals the factors controlling the singlet-to-triplet interconversion and suggests a possible chemical mechanism of bio-geomagnetic navigation. The application of cavity absorption and single-molecule spectroscopy technically improves the sensitivity of the experimental device and reduces the detection limit. This article mainly introduces the various spectroscopic techniques to study the electron-transfer process of flavin systems and their research results. Finally, possible future developments in this field are briefly discussed.
|
Received: 2021-01-04
Accepted: 2021-04-05
|
|
Corresponding Authors:
WANG Xiao-jie
E-mail: wangxiaojie@nudt.edu.cn
|
|
[1] Maeda K, Robinson A J, Henbest K B, et al. Proc. Natl. Acad. Sci. USA, 2012, 109: 4774.
[2] Engels S, Schneider N L, Lefeldt N, et al. Nature, 2014, 509: 353.
[3] Du X L, Wang J, Pan W S, et al. Photochem. Photobiol., 2014, 90: 989.
[4] Kattnig D R, Solov’yov I A, Hore P J. Phys. Chem. Chem. Phys., 2016, 18: 12443.
[5] Kattnig D R. J. Phys. Chem. B., 2017, 121: 10215.
[6] Broda E, Kalab B. Mikrochim. Acta, 1962, 50: 128.
[7] Koziol J. Experientia, 1965, 21: 189.
[8] Koziol J. Photochem. Photobiol., 1966, 5: 41.
[9] Koziol J. Photochem. Photobiol., 1969, 9: 45.
[10] Mondal P, Schwinn K, Huix-Rotllant M. J. Photochem. Photobio A., 2020, 387: 112164.
[11] Schwinn K, Ferré N, Huix-Rotllant M. Phys. Chem. Chem. Phys., 2020, 22: 12447.
[12] Kar R K, Borin V A, Ding Y H, et al. Photochem Photobiol., 2019, 95: 662.
[13] Ghisla S, Massey V, Jean-Marc L, et al. Biochemistry, 1974, 13(3): 589.
[14] Tyagi A, Penzkofer A. J. Photochem. Photobio A., 2010, 215: 108.
[15] Penzkofer A. J. Photochem. Photobio A., 2016, 314: 114.
[16] Shirdel J, Zirak P, Penzkofer A, et al. Chem. Phys., 2008, 352: 35.
[17] Insinńska-Rak M, Golczak A, Sikorski M. J. Phys. Chem. A., 2012, 116: 1199.
[18] Hoang N, Schleicher E, Kacprzak S, et al. PLoS Biology, 2008, 6(7): e160.
[19] Giovani B, Byrdin M, Ahmad M. Nat. Struct. Mol. Biol., 2003, 10: 489.
[20] Lukacs A. J. Am. Chem. Soc., 2008, 130: 14394.
[21] Li G F, Glusac K D. J. Phys. Chem. A, 2008, 112: 4573.
[22] Langenbacher T, Immeln D, Dick B, et al. J. Am. Chem. Soc., 2009, 131: 14274.
[23] Byrdin M J, Lukacs A, Thiagarajan V, et al. Phys. Chem. A, 2010, 114: 3207.
[24] Brazard J. J. Am. Chem. Soc., 2010, 132: 4935.
[25] Ernst S, Rovida S, Mattevi A. Nat. Commun., 2020, 11: 2600.
[26] Antill L M, Takizawa S, Murata S, et al. Mol. Phys., 2019, 117(19):2594.
[27] Zirak P, Penzkofer A, Mathes T, et al. Chem. Phys., 2009, 358: 111.
[28] Chang C W, He T F, Guo L J, et al. J. Am. Chem. Soc., 2010, 132(36): 12741.
[29] Kao Y T, Saxena C, He T F, et al. J. Am. Chem. Soc., 2008, 130(39): 13132.
[30] Immeln D. J. Am. Chem. Soc., 2012, 134: 12536.
[31] Müller P, Bouly J, Hitomi K. Sci. Rep., 2015, 4: 5175.
[32] Gindt Y M, Vollenbroek E, Westphal K, et al. Biochemistry, 1999, 38: 3857.
[33] Hore P J, Mouritsen H. Annu. Rev. Biophys., 2016, 45: 1.
[34] Bialas C, Barnard D T, Auman D B, et al. Phys. Chem. Chem. Phys., 2019, 21: 13453.
[35] Bialas C, Jarocha L E, Henbest K B, et al. J. Am. Chem. Soc., 2016, 138: 16584.
[36] Martin R, Lacombat F, Espagne A, et al. Phys. Chem. Chem. Phys., 2017, 19: 24493.
[37] Lacombat F, Espagne A, Dozova N, et al. J. Am. Chem. Soc., 2019, 141: 13394.
[38] Kerpal C, Richert S, Storey J G, et al. Nat Commun., 2019, 10: 3707.
[39] Lewis A M, Fay T P, Manolopoulos D E, et al. J. Chem. Phys., 2018, 149: 034103.
[40] Bargon J, Fischer H, Johnsen U. Z. Naturforsch., 1967, A22: 1551.
[41] Ward H, Lawler R. J. Am. Chem. Soc., 1967, 89: 5518.
[42] Richter G, Weber S, Römisch W, et al. J. Am. Chem. Soc., 2005, 127: 17245.
[43] Kothe G, Lukaschek M, Link G, et al. J. Phys. Chem. B, 2014, 118: 11622.
[44] Feldmeier C, Bartling H, Magerl K, et al. Angew. Chem. Int. Ed., 2015, 54: 1347.
[45] Pompe N, Chen J, Illarionov B, et al. J. Chem. Phys., 2019, 151: 235103.
[46] Paul S, Kiryutin A S, Guo J, et al. Sci. Rep., 2017, 7: 11892.
[47] Paul S, Meng Ling-qiang, Berger S, et al. ChemPhotoChem., 2017, 1: 12.
[48] GUO Jin-ping, WAN Hao-yu, Matysik J, et al(郭锦平,万浩宇,Matysik J, 等). Acta Chimca Sinica(化学学报), 2018, 71: 34.
[49] Zysmilich M G, McDermott A. J. Am. Chem. Soc., 1994, 116: 8362.
[50] Wang Xiaojie, Thamarath S S, Alia A, et al. Acta Physico-Chimica Sinica, 2016, 32(2): 399.
[51] Thamarath S S, Heberle J, Hore P J, et al. J. Am. Chem. Soc., 2010, 132: 15542.
[52] WANG Xiao-jie, Thamarath S S, Matysik J(王孝杰,Thamarath S S, Matysik J). Acta Chimica Sinica(化学学报), 2013, 71(2): 169.
[53] Ding Y H, Kiryutin A S, Yurkovskaya A V, et al. Sci. Rep., 2019, 9: 18436.
[54] Zollitsch T M, Jarocha L E, Bialas C, et al. J. Am. Chem. Soc., 2018, 140: 8705.
[55] Ikeya N, Nasibulov E A, Ivanov K L, et al. Molecular Physics., 2019, 117: 2604.
|
[1] |
CHEN Chao-yang1, HUANG Wei-zhi1, GAO Qiang2, FAN Lu-wei3, Andy Hsitien Shen1*. Assignments on Raman Peaks of Red Coral Based on Experimental Raman Spectroscopy and Density Functional Theory Calculation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 127-130. |
[2] |
FANG Zi-qiu1,2, CHEN Guo-qing1,2*, WU Ya-min1,2. Studyon the Spectral Properties of Riboflavin in Different Polar Solvents[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1132-1136. |
[3] |
WEI Liang-shu, WU Fang, JIANG Xi-ping, LIU Gui-ling, LU Li-ping*. Studies on Structure and Dynamics of Lutein Aggregate Based on Ultraviolet-Visible Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(12): 3796-3800. |
[4] |
ZHANG Lan-lan, XU Chang-shan*, CHEN Ze-lin, SHAO Hai-ling, ZHANG Hai-jiao, QIAO Jin. Distribution of Aloe-Emodin and Its Color and Spectral Properties under the Influence of ZnO NPs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 883-889. |
[5] |
JIA Fei-yun1, SU Yu1, RAN Ming2, ZHU Jiang1, ZHANG Bo1* . Theoretical Study on Fluorescence Spectra of Four Kinds of p-Substituted Curcumin Analogues [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(04): 999-1002. |
[6] |
SONG Yu-min, YANG Mei-ling,MA Jun-huai, ZHANG Yu-mei . Photochromic Properties of Complexes of Curcumin Aniline Schiff Base with Rare Earth [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(12): 3202-3206. |
[7] |
JIA Fei-yun1, RAN Ming2, SU Yu1, ZHU Jiang1, ZHANG Bo1* . Theoretical Study on Nuclear Magnetic Resonance Spectra of the Four Kinds of Curcumin Analogues[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(09): 2532-2535. |
[8] |
WU Xiao-fen, CAI Zhao-xia, SUN Shu-guo, HUANG Qun, REN Guo-dong, HE Lan, MA Mei-hu* . Investigation of Interaction between Riboflavin and Riboflavin Binding Protein by Fluorescence Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(03): 719-722. |
[9] |
LI Dan, SUN Xiang-ying*, LI Fang . The Excimer of Thioflavin T Induced by Polyelectrolyte and Its Fluorescence Ratiometric Sensing for Temperature [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(02): 431-435. |
[10] |
LI Yong-sheng1,GAO Xiu-feng2*. A New Method for Chemical Analysis: Fluorescence Capillary Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(08): 1565-1569. |
[11] |
WANG Jing, WANG Jin, MIAO Hong-li, YANG Ai-ling, ZHENG Rong-er, MENG Ji-wu. Study of Luminescence Ability of Organic White Light Emitting Diode by Light Conversion [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(05): 672-674. |
[12] |
WANG Jing,XU Bing-ming,WANG Jin,MENG Ji-wu . Research on Energy Transfer between Riboflavin and Anthrone Derivative [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(03): 337-340. |
|
|
|
|