光谱学与光谱分析 |
|
|
|
|
|
Application of SVR in Quantitative Analysis of Wines |
LUO Tao1, WEI Ji-ping2, ZHAO Yu-ping3, ZHANG Jun4 |
1. School of Computer Science and Technology,Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin 300072,China 2. School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072,China 3. School of Chemical and Biological Science, Yantai University,Yantai 264005, China 4. Sino-French Joint-Venture Dynasty Winery LTD., Tianjin 300402, China |
|
|
Abstract Fourier transform infrared spectroscopy has been widely used in some related fields, thus induces the rapid development of quantitative analysis method based on Lambert-Beer’s Law and chemometrics in recent years. The selection of appropriate pre-processing method and calibration model is extremely crucial to the quantitative analysis. The present paper selected 30 wine samples and used infrared spectroscopy combined with vector regression algorithm SVR quantitative analysis model with standard normal variate, baseline correction and outliers elimination to analyze four representative components of wine. Satisfactory results were gained while the relative errors were limited to less than 5%. This method can be applied to the wine representative quantitative analysis for the material content.
|
Received: 2013-03-11
Accepted: 2013-05-12
|
|
Corresponding Authors:
LUO Tao
E-mail: luo_tao@tju.edu.cn;zhangj@dynasty.com.cn
|
|
[1] Gauglitz G, Vo-Dinh T. Handbook of Spectroscopy, Wiley, VCH, 2003. [2] Griffiths P R, Haseth J. Fourier Transform Infrared Spectrometry, Wiley, 2007. [3] Wold H. Soft Modeling by Latent Variables: the Nonlinear Literative Partial Least Squares Approach, Perspectives in Probability and Statistics, 1975. [4] Despagne F, Massart D L. Neural Networks in Multivariate Calibration, Analyst, 1998, 123: 157R. [5] Vapnik V. Statistical Learning Theory, Wiley, New York, 1998. [6] Belousov A I, Verzakov S A, von Frese J. Applicational Aspects of Support Vector Machines, J. Chemom., 2002, 16: 482. [7] Capron X, Smeyers-Verbeke J. Food Chemistry,2007,101(4):1585. [8] Ovidiu Lvanciuc. Reviews in Computational Chemistry, 2007, 23:291. |
[1] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[2] |
LIN Hong-jian1, ZHAI Juan1*, LAI Wan-chang1, ZENG Chen-hao1, 2, ZHAO Zi-qi1, SHI Jie1, ZHOU Jin-ge1. Determination of Mn, Co, Ni in Ternary Cathode Materials With
Homologous Correction EDXRF Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3436-3444. |
[3] |
HUANG Li, MA Rui-jun*, CHEN Yu*, CAI Xiang, YAN Zhen-feng, TANG Hao, LI Yan-fen. Experimental Study on Rapid Detection of Various Organophosphorus Pesticides in Water by UV-Vis Spectroscopy and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3452-3460. |
[4] |
LI Zhong-bing1, 2, JIANG Chuan-dong2, LIANG Hai-bo3, DUAN Hong-ming2, PANG Wei2. Rough and Fine Selection Strategy Binary Gray Wolf Optimization
Algorithm for Infrared Spectral Feature Selection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3067-3074. |
[5] |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1*. Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3132-3142. |
[6] |
LI Xin1, LIU Jiang-ping1, 2*, HUANG Qing1, HU Peng-wei1, 2. Optimization of Prediction Model for Milk Fat Content Based on Improved Whale Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2779-2784. |
[7] |
KONG De-ming1, LIU Ya-ru1, DU Ya-xin2, CUI Yao-yao2. Oil Film Thickness Detection Based on IRF-IVSO Wavelength Optimization Combined With LIF Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2811-2817. |
[8] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[9] |
CHENG Xiao-xiang1, WU Na2, LIU Wei2*, WANG Ke-qing2, LI Chen-yuan1, CHEN Kun-long1, LI Yan-xiang1*. Research on Quantitative Model of Corrosion Products of Iron Artefacts Based on Raman Spectroscopic Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2166-2173. |
[10] |
CHEN Rui1, WANG Xue1, 2*, WANG Zi-wen1, QU Hao1, MA Tie-min1, CHEN Zheng-guang1, GAO Rui3. Wavelength Selection Method of Near-Infrared Spectrum Based on
Random Forest Feature Importance and Interval Partial
Least Square Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1043-1050. |
[11] |
DENG Xiao-jun1, 2, MA Jin-ge1, YANG Qiao-ling3, SHI Yi-yin1, HUO Yi-hui1, GU Shu-qing1, GUO De-hua1, DING Tao4, YU Yong-ai5, ZHANG Feng6. Visualized Fast Identification Method of Imported Olive Oil Quality Grade Based on Raman-UV-Visible Fusion Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1117-1125. |
[12] |
WANG Hai-ping1, 2, ZHANG Peng-fei1, XU Zhuo-pin1, CHENG Wei-min1, 3, LI Xiao-hong1, 3, ZHAN Yue1, WU Yue-jin1, WANG Qi1*. Quantitative Determination of Na and Fe in Sorghum by LIBS Combined With VDPSO-CMW Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 823-829. |
[13] |
XU Wei-xin, XIA Jing-jing, WEI Yun, CHEN Yue-yao, MAO Xin-ran, MIN Shun-geng*, XIONG Yan-mei*. Rapid Determination of Oxytetracycline Hydrochloride Illegally Added in Cattle Premix by ATR-FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 842-847. |
[14] |
ZHENG Li-na1, 2, XUAN Peng1, HUANG Jing1, LI Jia-lin1. Development and Application of Spark-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 665-673. |
[15] |
GAO Xi-ya1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3*, LU Cui-cui1, 2, 3, MENG Yong-ji1, 2, 3, CAO Hui-min1, 2, 3, ZHENG Dong-yun1, 2, 3, ZHANG Li1, 2, 3, XIE Qin-lan1, 2, 3. Quantitative Analysis of Hemoglobin Based on SiPLS-SPA
Wavelength Optimization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 50-56. |
|
|
|
|