光谱学与光谱分析 |
|
|
|
|
|
Synthesis and Spectral Studies of Nickel(Ⅱ) Complex of 2,6-Bis [N-(1,1’-Dimethyl-2’-Hydroxy)Carbamoyl]Pyridine |
LUO Shi-xia1, CHEN Xiao-jing1,ZHU Huai-wu1, ZHANG Xiao-yi1, WEI Gang2* |
1. School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China 2. CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070, Australia |
|
|
Abstract The ligand of 2,6-bis[N-(1,1’-dimethyl-2’-hydroxy)carbamoyl]pyridine and its nickel(Ⅱ) complex were synthesized and characterized by using 1H-NMR, 13C-NMR, FTIR, UV-Vis and elemental analysis, and the complex formulae of C15H21N3O4Ni·H2O were determined. The spectral property of the free ligand and its nickel(Ⅱ) complex was discussed with the comparison method, and then the structure of nickel(Ⅱ) complex was determined. The spectral analysis results show that 2,6-bis[N-(1,1’-dimethyl-2’-hydroxy)carbamoyl]pyridine acts as a tridentate ligand, coordinating through two nitrogen atoms of amide anion and one nitrogen atom of aromatic pyridine-ring, and the nickel(Ⅱ) ion is a four-coordinated geometry with dsp2 hybrid orbitals for bonding these coordinating atoms. The target complex is a square planar low-spin nickel(Ⅱ) coordination compound, and a nickel(Ⅱ) ion coordinates to a tridentate ligand and one coordination water molecule.
|
Received: 2011-07-19
Accepted: 2011-10-20
|
|
Corresponding Authors:
WEI Gang
E-mail: gang.wei@csiro.au
|
|
[1] SHI Chun-yue,GE Chun-hua,LIU Qi-tao(史春越,葛春华,刘祁涛). Chinese Journal of Inorganic Chemistry(无机化学学报),2010, 26(8): 1323. [2] Tiekink R E, Vittal J, Zaworotko M. Organic Crystal Engineering: Frontiers in Crystal Engineering. John Wiley & Sons Inc., 2010, 215. [3] Dash J, Waller Z A, Pantos G D, et al. Chem. Eur. J., 2011, 17(16): 4571. [4] Sharma A K, Biswas S, Barman S K, et al. Inorg. Chim. Acta, 2010, 363(12): 2720. [5] Pérez Y, Johnson A L, Raithby P R. Polyhedron, 2011, 30(2): 284. [6] Mehdipour-Ataei S, Taremi F. J. Appl. Polym. Sci., 2011, 121(1): 299. [7] Letavic A M, Aluisio L, Atack R John, et al. Bioorg. Med. Chem. Lett., 2010, 20(14): 4210. [8] Ruggi A, Alonso B M, Reinhoudt N D, et al. Chem. Commun., 2010, 46(36): 6726. [9] Gould E A, Adams R, Adhikari S, et al. J. Med. Chem., 2011, 54(6): 1836. [10] CHEN Man-sheng, LUO Li, CHEN Shui-sheng, et al(陈满生,罗 莉,陈水生,等). Chinese Journal of Inorganic Chemistry(无机化学学报),2010, 26(12): 2227. [11] Chmel N P, Allan L E, Becker J M, et al. Dalton Trans., 2011, 40: 1722. [12] LUO Shixia, Tiwow V, Maeder M, et al. J. Coord. Chem., 2010, 63(14): 2400. [13] Napitupulu M, Griggs L B, Luo Shixia, et al. J. Heterocycl. Chem., 2009, 46(2): 243. [14] Alcock W N, Clarkson G, Glover B P, et al. Dalton Trans., 2005, 15: 518. [15] Das A, Trousdale M D, Ren S, et al. Antiviral Res., 1999, 44(3): 201. [16] ZHU Huai-wu(朱淮武). Spectral Analysis of Organic Molecular Structures(有机分子结构波谱解析). Beijing: Chemical Industry Press(北京:化学工业出版社),2005. 84. [17] Ottenwaelder X, Aukauloo A, Journaux Y, et al. Dalton Trans., 2005, 15: 2516.
|
[1] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[2] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[3] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[4] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[5] |
LIANG Jin-xing1, 2, 3, XIN Lei1, CHENG Jing-yao1, ZHOU Jing1, LUO Hang1, 3*. Adaptive Weighted Spectral Reconstruction Method Against
Exposure Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3330-3338. |
[6] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[7] |
HUANG Chao1, 2, ZHAO Yu-hong1, ZHANG Hong-ming2*, LÜ Bo2, 3, YIN Xiang-hui1, SHEN Yong-cai4, 5, FU Jia2, LI Jian-kang2, 6. Development and Test of On-Line Spectroscopic System Based on Thermostatic Control Using STM32 Single-Chip Microcomputer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2734-2739. |
[8] |
ZHENG Yi-xuan1, PAN Xiao-xuan2, GUO Hong1*, CHEN Kun-long1, LUO Ao-te-gen3. Application of Spectroscopic Techniques in Investigation of the Mural in Lam Rim Hall of Wudang Lamasery, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2849-2854. |
[9] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[10] |
WANG Jing-yong1, XIE Sa-sa2, 3, GAI Jing-yao1*, WANG Zi-ting2, 3*. Hyperspectral Prediction Model of Chlorophyll Content in Sugarcane Leaves Under Stress of Mosaic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2885-2893. |
[11] |
WANG Yu-qi, LI Bin, ZHU Ming-wang, LIU Yan-de*. Optimizations of Sample and Wavelength for Apple Brix Prediction Model Based on LASSOLars Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1419-1425. |
[12] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[13] |
JIN Cui1, 4, GUO Hong1*, YU Hai-kuan2, LI Bo3, YANG Jian-du3, ZHANG Yao1. Spectral Analysis of the Techniques and Materials Used to Make Murals
——a Case Study of the Murals in Huapen Guandi Temple in Yanqing District, Beijing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1147-1154. |
[14] |
DING Kun-yan1, HE Chang-tao2, LIU Zhi-gang2*, XIAO Jing1, FENG Guo-ying1, ZHOU Kai-nan3, XIE Na3, HAN Jing-hua1. Research on Particulate Contamination Induced Laser Damage of Optical Material Based on Integrated Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1234-1241. |
[15] |
ZHANG Bao-ping1, NING Tian1, ZHANG Fu-rong1, CHEN Yi-shen1, ZHANG Zhan-qin2, WANG Shuang1*. Study on Raman Spectral Characteristics of Breast Cancer Based on
Multivariable Spectral Data Analysis Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 426-434. |
|
|
|
|