光谱学与光谱分析 |
|
|
|
|
|
Study on Malignant and Normal Rectum Tissues Using IR and 1H and 31P NMR Spectroscopy |
GAO Xiu-xiang1,YAO Hong-wei2,DU Jun-kai3,ZHAO Mei-xian1, 4,QI Jian1,LI Hui-zhen1, 5,PAN Qing-hua1, 6, XU Yi-zhuang1*,WU Jin-guang1 |
1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 2. The Third Hospital, Peking University, Beijing 100083, China 3. The First Hospital of Xi’an Jiaotong University, Xi’an 710061, China 4. Applied Chemistry Department, School of Science, Beijing University of Chemical Technology, Beijing 100029, China 5. College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China 6. Hangzhou Normal University, Hangzhou 310012, China |
|
|
Abstract In the present paper, NMR spectroscopy, an effective tool to detect the variation in molecular structure and changes in chemical composition of metabolites in tissues, was used to study the differences between malignant and normal tissues from rectum. 1H and 31P spectra of seven malignant rectum tissue samples and five normal control tissues were investigated by using a 300 M NMR spectrometers and compared with the results of the infrared spectra of normal and malignant rectum organ tissues. The results indicate that the 1H and 31P spectra of rectum cancer tissues are significantly different from those of the normal controls and most differences present in the form of variation in relative intensities of the characteristic peaks of various metabolites. Systematic differences in the NMR spectra between malignant tissues and normal controls are as follows: in the 1H NMR spectra, differences lie in fatty acids with the concentration of fatty acid decreasing significantly in malignant tissues. In the 31P NMR spectra, differences lie in phospholipid, with the chemical shift of phospholipid decreasing significantly in malignant tissues. This phenomenon may reflect the fact that the activity of protein synthesis is enhanced in cancerous tissues. The difference in the chemical shift of phospholipid between normal rectal tissue and malignant tissue may be considered as a detection criterion. Therefore, the above spectral variations in 31P NMR spectra may be utilized as a potential tool to diagnose rectum cancer.
|
Received: 2008-05-10
Accepted: 2008-08-20
|
|
Corresponding Authors:
XU Yi-zhuang
E-mail: xiuxianggao@sina.com
|
|
[1] WANG Fan,LING Xiao-feng,YANG Zhan-lan,et al(王 凡,凌晓峰,杨展澜,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2003,23(3):498. [2] XU Yi-zhuang,ZHAO Ying,XU Zhi,et al(徐怡庄,赵 莹,徐 智,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(11):1775. [3] YANG Li-min,XU Zhi,ZHANG Yuan-fu,et al(杨丽敏,徐 智,张元福,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2003,23(5):883. [4] PENG Qing, XU Yi-zhuang, LI Wei-hong, et al(彭 卿,徐怡庄,李维红,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),1998,18(5):528. [5] MENG Tao,XU Duan-fu,XU Yi-zhuang, et al(孟 涛,徐端夫,徐怡庄,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2007,27(6):1156. [6] MENG Tao,XU Duan-fu,ZHAO Ying,et al(孟 涛,徐端夫,赵 莹,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2007,27(10):2069. [7] ZHAO Mei-xian,GAO Xiu-xiang,QI Jian,et al(赵梅仙,高秀香,齐 剑,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2008,28(2):308. [8] GAO Xiu-xiang,XU Yi-zhuang,ZHAO Mei-xian,et al(高秀香,徐怡庄,赵梅仙,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2008,28(8): 1942. [9] GAO Xiu-xiang,HE Wen-yi,YAO Hong-wei,et al(高秀香,贺文义,姚宏伟,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2008,28(9): 2201. [10] Nikolaus M Loening,Anne M Chamberlin,Andrea G Zepeda,et al. NMR Biomed.,2005,18:413. [11] Ignasi Barba,Paul Mann,et al. NMR Biomed.,2001,14: 33. [12] LIU Qiang, WANG Bin, WU Le-bin(刘 强,王 滨, 武乐斌). Journal of Practical Radiology(实用放射学杂志), 2005, 21(5): 493. [13] Pieter C Dagnelie,Paul E Sijens,Deni J A Kraus,et al. NMR Biomed.,1999,12: 535. [14] Thomas E Merchant,Bruce D Minsky,Gregory Y Lauwers,et al. NMR Biomed.,1999,12: 184. [15] Süllentrop F,Moka D,Neubauer S,et al,NMR Biomed.,2002,15: 60. [16] Klaus Raffelt,Detlef Moka,et al. NMR Biomed.,2000,13: 8. [17] Payne G S,Troy H,Vaidya S J,et al. NMR Biomed., 2006,19: 593. [18] CHEN Li-yong,HUANG Zhi-wei,WANG Yi-zhong,et al(陈利永,黄志伟,王一中,等). Chinese Journal Magnetic Resonance(波谱学杂志), 1996, 13(1): 87. [19] WU Guang-yao,SUN Jun-mo, LI Hao(吴光耀,孙骏谟,雷 皓). Foreign Medical Sciences Clinical Radiological Fascicle(国外医学临床放射学分册), 2005, 28(3): 129. [20] Podo F,NMR in Biomedicine,1999,12(7): 413. [21] Khan S A,Cox I J,Hamilton G,et al. Liver International,2005,25(2),273. |
[1] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[2] |
LIANG Wan-jie1, FENG Hui2, JIANG Dong3, ZHANG Wen-yu1, 4, CAO Jing1, CAO Hong-xin1*. Early Recognition of Sclerotinia Stem Rot on Oilseed Rape by Hyperspectral Imaging Combined With Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2220-2225. |
[3] |
CHEN Lei1, 2, HAO Xiao-yu1, MA Xing-zhu1, ZHOU Bao-ku1, WEI Dan3, ZHOU Lei4, LIU Rong-le5, WANG Hong2*. Changes in Organic Carbon Components and Structure of Black Rhizosphere Soil Under Long-Term Different Fertilization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3883-3888. |
[4] |
LI Peng-hui, JIANG Zheng-wei, LI Jia-quan, REN Jian-peng, WU Wen-juan*. Research Progress in Quantitative Determination of Phenolic Hydroxyl Groups in Lignin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2666-2671. |
[5] |
ZHANG Yan1, WANG Hui-le1, ZHAO Hui-fang1, LI Jing1, TONG Xin1, LIU Zhong2. Optimization of Corn Stalk Liquefaction Conditions Under Atmospheric Pressure and Analysis of Biofuel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2551-2556. |
[6] |
LI Huan-tong1, 2, ZHU Zhi-rong1, 2, QIAO Jun-wei1, 2, LI Ning3, YAO Zheng3, HAN Wei1, 2. Molecular Representations of Jurassic-Aged Vitrinite-Rich and
Inertinite-Rich Coals in Northern Shannxi Province by
FTIR, XPS and 13C NMR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2624-2630. |
[7] |
XIN Hong-juan1, YANG Dong-ling1, HAN Chao-qun1, GU Xue-qi1, YANG Jian-jun2, LIU Jin1*, CHEN Yuan-quan1, SUI Peng1. Molecular Characterization of Phosphorus in Typical Crop Residues[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2304-2308. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
ZHANG Yan-yan1, 2, LI Dong-xian1, 2, MA Liu-zheng1, 2, ZHANG Hao1, 2, SU Rui1, 2, LI Lin-ze1, 2, HU Jian-dong1, 2, 3*. Spectroscopic and Structure Study of Plant Hormone Abscisic Acid: Theory and Experiments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2859-2865. |
[10] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[11] |
HUANG Wei-bo, CHEN Jia-yun, HUANG Fang, HUANG Li-shan, OUYANG Jian-ming*. Effects of Different Molecular Weight of Gracilaria Lemaneiformis Polysaccharide on Calcium Oxalate Crystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1163-1170. |
[12] |
TONG Li-hong1, ZHU Ling2, ZHAO Nan3, LÜ Yi-zhong1*, LIU Xia-yan1, JIANG Shan1, LI Ying-xin1. Spectroscopic Characteristics of Soil Humus Components Under Different Proportions of Organic and Inorganic Fertilizers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 523-528. |
[13] |
LI Xiang, LI Zhong-feng, GAO Jun, WANG Xia, ZHANG Xin*, ZHANG Zhuo-yong*. Analysis of Metabolism During Mung Bean Germination by 1H-NMR Combining With MCR-ALS With Selectivity Constraint[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3010-3014. |
[14] |
HU Yin, WANG Min-chang, PAN Qing, NING Yan-li, KANG Ying, WANG Ming, LUAN Jie-yu, CHEN Zhi-qun. Spectroscopic Analysis of Endo and Exo-Tetrahydrodicyclopentadiene[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3161-3166. |
[15] |
ZHANG Nan, ZHUANG Ling-hua. Spectral Analysis and Structural Identification of Remifentanil Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2059-2065. |
|
|
|
|