Research Progress in the Design of Carbazole-Based Organic Room
Temperature Phosphorescence Materials
WANG Xiao-ao1, ZHAO Lu1, BAI Yun-feng1, 2*, FENG Feng1*
1. Shanxi Provincial Key Laboratory of Chemical Biosensing, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
2. School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
Abstract:Organic room temperature phosphorescence (oRTP) materials have the advantages of good processability, excellent biocompatibility, low biotoxicity, and low cost, which have become the focus of functional materials research. Among them, carbazole-based oRTP materials have been rapidly developed -in terms of molecular structure design, performance regulation, and optimization, and have been more widely used in anti-counterfeiting, biooptical imaging, information encryption, and other applications. Carbazole is a nitrogen-containing heterocyclic compound with a rigid planar conjugated structure and excellent hole transport properties and thermal stability. In addition, carbazole's planarization structure is conducive to intermolecular stacking interaction, thus strengthening the intermolecular electron coupling effect and stabilizing the triplet excitons. In addition, carbazole, as an excellent chromophore, has been extensively modified to obtain better RTP properties. This paper describes the luminescence mechanism of oRTP materials. It summarizes the design strategies of carbazole-based oRTP materials with long phosphor lifetime, including: (1) Intermolecular electron coupling: face-to-face packing or H-aggregation can stabilize triplet excitons, which is generally conducive to efficient and long-lived RTP. (2) Spin-orbit coupling: the strong spin-orbit coupling of heavy atoms can efficiently promote intersystem crossing (ISC) of electrons from the first electron excited singlet state to the lowest excited triplet state (S1-T1) or from singlet state to triplet state (Sn-T<i>n, n≥1) and induce phosphorescence emission. (3) Exciton separation systems: by constructing a distorted donor-acceptor system, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are separated, thereby reducing the energy gap (ΔEST) between singlet and triplet states and increasing the intersystem crossing rate (kISC).(4) Polymer encapsulation system: polymer encapsulation can build a dense and rigid external environment to effectively inhibit non-radiative transition and oxygen diffusion, significantly improve RTP efficiency, and extend RTP life. (5) Hydrogen bond system: the interaction of hydrogen bonds greatly weakens molecular vibration and non-radiation inactivation, improves its tolerance to temperature, and can shield water and oxygen. Then, the application of carbazole-based oRTP materials in anti-counterfeiting and other aspects is introduced. Finally, the challenges faced in this field and the research directions worthy of attention are discussed. In summary, challenges and opportunities coexist; it can be expected that -research on carbazole-based oRTP materials will become a new shining point in the field of organic luminescent materials. With continuous exploration and innovation, such materials will likely show a broader application prospect in the future.
Key words:Carbazole; Organic room temperature phosphorescence; Long life; Design strategies; Crystals
王晓澳,赵 璐,白云峰,冯 锋. 咔唑类有机室温磷光材料设计研究进展[J]. 光谱学与光谱分析, 2025, 45(09): 2417-2427.
WANG Xiao-ao, ZHAO Lu, BAI Yun-feng, FENG Feng. Research Progress in the Design of Carbazole-Based Organic Room
Temperature Phosphorescence Materials. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2417-2427.
[1] Forni A, Lucenti E, Botta C, et al. Journal of Materials Chemistry C, 2018, 6(17): 4603.
[2] Yan X, Peng H, Xiang Y, et al. Small, 2022, 18(1): 2104073.
[3] Yu Y, Fan Y Y, Wang C, et al. Materials Chemistry Frontiers, 2021, 5(2): 817.
[4] Zhao W J, He Z K, Tang B Z. Nature Reviews Materials, 2020, 5(12): 869.
[5] Wu Z, Nitsch J, Marder T B. Advanced Optical Materials, 2021, 9(20): 2100411.
[6] Yang Z Y, Mao Z, Zhang X P, et al. Angewandte Chemie-International Edition, 2016, 55(6): 2181.
[7] Gao H Q, Gao Z Y, Jiao D, et al. Small, 2021, 17(22): 2005449.
[8] Lin X H, Wang J, Ding B B, et al. Angewandte Chemie International Edition, 2021, 60(7): 3459.
[9] Wang Y T, Liu W J, Ren L T, et al. Materials Chemistry Frontiers, 2019, 3(8): 1661.
[10] Yang J, Gao X M, Xie Z L, et al. Angewandte Chemie—International Edition, 2017, 56(48): 15299.
[11] Bi X Q, Shi Y G, Peng T, et al. Advanced Functional Materials, 2021, 31(24): 2101312.
[12] Chen Z J, Li M K, Qiu W D, et al. Journal of Materials Chemistry C, 2021, 9(44): 15998.
[13] Xu Q Y, Ma L W, Sun S Y, et al. Journal of Materials Chemistry C, 2021, 9(41): 14623.
[14] Yao Z Q, Xu J, Zou B, et al. Angewandte Chemie—International Edition, 2019, 58(17): 5614.
[15] Ling K, Shi H F, Wang H, et al. Advanced Optical Materials, 2019, 7(24): 1901076.
[16] Kukhta N A, Bryce M R. Materials Horizons, 2021, 8(1): 33.
[17] Nhari L M, El-Shishtawy R M, Asiri A M. Dyes and Pigments, 2021, 193: 109465.
[18] Wang Y G, Sun Q K, Yue L T, et al. Advanced Optical Materials, 2021, 9(21): 2101075.
[19] Gong Y Y, Chen G, Peng Q, et al. Advanced Materials, 2015, 27(40): 6195.
[20] He Z H, Gao H Q, Zhang S T, et al. Advanced Materials, 2019, 31(18): 1807222.
[21] Huang Q Q, Mei X F, Xie Z L, et al. Journal of Materials Chemistry C, 2019, 7(9): 2530.
[22] Li B W, Gong Y B, Wang L, et al. The Journal of Physical Chemistry Letters, 2019, 10(22): 7141.
[23] Mane S K B, Mu Y X, Ubba E, et al. Journal of Materials Chemistry C, 2019, 7(48): 15219.
[24] Xue P C, Wang P P, Chen P, et al. Chemical Science, 2017, 8(9): 6060.
[25] Zhang Z Z, Tang L L, Fan X J, et al. Journal of Materials Chemistry C, 2018, 6(33): 8984.
[26] GONG Zhu-ke, XU Hui(龚筑轲, 许 辉). Progress in Chemistry(化学进展), 2022, 34(11): 2432.
[27] Zhang H Y, Ma H L, Huang W B, et al. Materials Horizons, 2021, 8(10): 2816.
[28] Guo X, Zhen J S, Long J Q, et al. Journal of Luminescence, 2023, 257: 119720.
[29] Qian C, Zhang X, Ma Z M, et al. CCS Chemistry, 2024, 6(3): 798.
[30] Yin Z, Gu M X, Ma H L, et al. Angewandte Chemie—International Edition, 2021, 60(4): 2058.
[31] Yuan S, Zhang Y F, Chen J W, et al. Advanced Optical Materials, 2022, 10(15): 2200090.
[32] Zheng K L, Yang X M, Ni F, et al. Chemical Engineering Journal, 2021, 408: 127309.
[33] Zhu Y, Guan Y, Niu Y F, et al. Advanced Optical Materials, 2021, 9(21): 2100782.
[34] JIN Wei-jun(晋卫军). Molecular Emission Spectroscopy Analysis(分子发射光谱分析). Beijing: Chemical Engineering Press(北京:化学工业出版社), 2018.
[35] Yuan S, Sun Q K, Wang Y G, et al. Journal of Materials Chemistry C, 2021, 9(26): 8302.
[36] Shi H F, Yao W, Ye W P, et al. Accounts of Chemical Research, 2022, 55(23): 3445.
[37] Xu S, Chen R F, Zheng C, et al. Advanced Materials, 2016, 28(45): 9920.
[38] Fu H R, Zhang K, Li T, et al. Journal of Solid State Chemistry, 2023, 326: 124216.
[39] Li X N, Yang M X, Chen X L, et al. Small, 2019, 15(45): 1903270.
[40] Shen Q J, Wei H Q, Zou W S, et al. CrystEngComm, 2012, 14(3): 1010.
[41] Brannan A C, Phuoc N L, Linnolahti M, et al. Frontiers in Chemistry, 2023, 10: 1008658.
[42] Gao H Y, Shen Q J, Zhao X R, et al. Journal of Materials Chemistry, 2012, 22(12): 5336.
[43] Zhou Z H, Qiao C, Wang K, et al. Angewandte Chemie—International Edition, 2020, 59(48): 21677.
[44] Li Z W, Zhang X Y. Polymers, 2020, 12(4): 790.
[45] Fang B, Lai L M, Fan M Y, et al. Journal of Materials Chemistry C, 2021, 9(34): 11172.
[46] Jian M Y, Song Z C, Chen X J, et al. Chemical Engineering Journal, 2022, 429: 132346.
[47] Yang S Y, Zhang Y L, Kong F C, et al. Chemical Engineering Journal, 2021, 418: 129366.
[48] Dou X Y, Wang X, Xie X L, et al. Advanced Functional Materials, 2024, 34(23): 14069.
[49] Jiang J, Hu C, Wang Y, et al. Materials Today Chemistry, 2023, 30: 101548.
[50] Xu L H, Wei H S, Xie G H, et al. Advanced Functional Materials, 2024, 34(37): 2402428.
[51] Cai S Z, Shi H F, Zhang Z Y, et al. Angewandte Chemie—International Edition, 2018, 57(15): 4005.
[52] Cai S Z, Yao X K, Ma H L, et al. Aggregate, 2023, 4(3): e320.
[53] Yan X, Peng H, Xiang Y, et al. Small, 2022, 18(1): 2104073.
[54] Zhou M S, Gao P F, Jiang Y Y, et al. Dyes and Pigments, 2021, 195: 109715.
[55] Song X Q, Lu G, Man Y, et al. Angewandte Chemie—International Edition, 2023, 62(21): e202300980.