1. Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
2. Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
3. NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
Abstract:The quality of traditional Chinese medicines (TCMs) significantly impacts their efficacy and medication safety, with the place of origin being one of the crucial factors. Traditional methods for identifying the origin of TCMs primarily include macroscopic identification and microscopic identification. The macroscopic identification methodsrely on manual observation and experience, which are prone to misjudgment. The microscopic identification methods require processes such as slicing and staining of the TCMs, which are cumbersome and not applicable to rare TCMs. In recent years, spectral analysis has attracted increasing attention in the identification of TCM origins due to its advantages of rapidness and non-destructiveness. Among these, near-infrared spectroscopy (NIR) is widely employed. Therefore, this review summarizes the research on the origin identification of TCMsusing NIR over the past 10 years. It conducts geographical zoning of TCMs and systematically summarizes the distribution of Dao-di herbs in China, as well as the research popularity of different TCMs for origin identification. Currently, research on the origin identification of TCMs mainly focuses on precious and easily counterfeited herbal medicines in terms of origin, such as Panax notoginseng, Panax ginseng, Gastrodia elata Blume, and Dendrobium officinale. In the application of NIR for origin identification of TCMs over the last decade, the combination of traditional NIR with chemometric methods has remained the mainstream approach. Although two-dimensional NIR correlation spectroscopy has been applied in various fields, including food, agriculture, and industry, its use for the origin identification of TCMs has been limited to the past two years, making it an emerging technology in this field. NIR hyperspectral imaging can simultaneously obtain spectral and image information of samples, thereby improving identification accuracy. The combination of NIR with ultraviolet-visible (UV-Vis) spectroscopy can obtain information on chemical bonds and conjugate relationships of compounds in samples. NIR combination with mid-infrared spectroscopy can provide more abundant information on molecular skeletons, and its combination with laser-induced breakdown spectroscopy (LIBS) can obtain information on molecular vibration and elemental composition. The multi-spectral hyphenated technology based on NIR achieves multi-dimensional information complementarity, effectively overcoming the limitations of single-spectral technology, and enhances the effectiveness of identifying the origin of TCMs. This review also summarizes the chemometric methods used in the origin identification of TCMs, including spectral pre-processing, variable selection, and chemical pattern recognition. Spectral pre-processing methods can be divided into smoothing, scattering correction, baseline correction, and scaling, which are often used to eliminate the influences of noise, baseline, and background. Variable selection methods remove redundant variables, further improving the accuracy of discrimination models. Deep learning algorithms are increasingly applied in the analysis of the origin identification of TCMs. This review provides a methodological framework for the rapid and accurate identification of the origin of TCMs.
Key words:Traditional Chinese medicines; Origin identification; Near-infrared spectroscopy; Chemometric methods
张馨之,帕提姑丽·赛买提,张露文,杨亚非,卞希慧. 基于近红外光谱技术的中药材产地鉴别研究进展[J]. 光谱学与光谱分析, 2025, 45(09): 2410-2416.
ZHANG Xin-zhi, SAIMAITI Patiguli, ZHANG Lu-wen, YANG Ya-fei, BIAN Xi-hui. Research Progress on Geographical Origin Discrimination of Traditional Chinese Medicines Based on Near-Infrared Spectroscopy. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2410-2416.
[1] Guo J W, Lin G Q, Tang X Y, et al. Acta Pharmacologica Sinica, 2025, 46(5): 1156.
[2] SUN Xue, ZHANG Deng-ting, WANG Hui, et al(孙 雪, 章登停, 王 慧, 等). China Journal of Chinese Materia Medica(中国中药杂志), 2023, 48(16): 4337.
[3] Liu Y, Zhang L W, Zhang X Z, et al. Microchemical Journal, 2025, 213: 113605.
[4] LU Jing, ZHANG Ai-xia(卢 晶, 张爱霞). Chinese Journal of Agricultural Resources and Regional Planning(中国农业资源与区划), 2020, 41(5): 256.
[5] LAI Chang-jiang-sheng, ZHOU Rong-rong, YU Yi, et al(赖长江生, 周融融, 余 意, 等). China Journal of Chinese Materia Medica(中国中药杂志), 2018, 43(16): 3243.
[6] Wang P W, Sha M, Zhang W M, et al. Science of Traditional Chinese Medicine, 2024, 2(1): 37.
[7] CHEN Lu, ZHANG Hui, ZHANG Bing-chun, et al(陈 璐, 张 惠, 张丙春, 等). Quality and Safety of Agro-products(农产品质量与安全), 2019, (4): 41.
[8] LIU Wei, QIU Xi-wen, JIANG Li-wen, et al(柳 薇, 邱熙文, 蒋立文, 等). Journal of Instrumental Analysis(分析测试学报), 2025, 44(2): 246.
[9] LI Ping, SUN Yue-peng, ZHEN Hui-xian, et al(李 平, 孙越鹏, 甄会贤, 等). Chinese Traditional and Herbal Drugs(中草药), 2023, 54(17): 5734.
[10] SONG Jia-hang, LI Bin, TIAN Yan-cheng, et al(宋佳航, 李 斌, 田炎成, 等). Lishizhen Medicine and Materia Medica Research(时珍国医国药), 2017, 28(6): 1370.
[11] WANG Lei, QIN Hong, LI Jing, et al(王 磊, 覃 鸿, 李 静, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(4): 1270.
[12] CHU Gang-hui, TAN Xue-li(楚刚辉, 谭雪梨). Lishizhen Medicine and Materia Medica Research(时珍国医国药), 2020, 31(9): 2148.
[13] Deng G M, Li J Q, Liu H G, et al. Food Control, 2025, 167: 110810.
[14] LAI Xiao-na, LUO Hui-tai, ZHANG Chun-hua, et al(赖晓娜, 罗辉泰, 张春华, 等). Journal of Instrumental Analysis (分析测试学报). 2024, 43(2): 301.
[15] Ma X B, Hai P, Zhang M Q, et al. Phytochemical Analysis, 2024, 35(4): 723.
[16] Chen H, Tan C, Lin Z. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 304: 123315.
[17] GONG Sheng, ZHU Ya-ning, ZENG Chen-juan, et al(龚 圣, 朱雅宁, 曾陈娟, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(12): 3823.
[18] Pan W, Wu M, Zheng Z Z, et al. Journal of Food Science, 2020, 85(7): 2004.
[19] CUI Meng, DUAN Bao-zhong, CHENG Lei, et al(崔 萌, 段宝忠, 程 蕾, 等). Chinese Traditional and Herbal Drugs(中草药), 2024, 55(14): 4897.
[20] Yue J Q, Huang H Y, Wang Y Z. Phytochemical Analysis, 2022, 33(1): 136.
[21] Li L, Zuo Z T, Wang Y Z. Phytochemical Analysis, 2022, 33(5): 792.
[22] Liu Z M, Yang S B, Wang Y Z, et al. Microchemical Journal, 2021, 169: 106545.
[23] Han J Q, Hu Q, Wang Y Z. Food Bioscience, 2025, 63: 105753.
[24] He G, Yang S B, Wang Y Z. Computers and Electronics in Agriculture, 2024, 223: 109127.
[25] Xu Y L, Yang W Z, Wu X W, et al. Foods, 2022, 11(22): 3568.
[26] Xiao Q L, Bai X L, Gao P, et al. Sensors, 2020, 20(17): 4940.
[27] ZHANG Deng-ting, YANG Jian, CHENG Ming-en, et al(章登停, 杨 健, 程铭恩, 等). China Journal of Chinese Materia Medica(中国中药杂志), 2023, 48(16): 4347.
[28] ZHANG Qi, ZHAO Jin-long, ZHANG Xue-yi(张 婍, 赵金龙, 张学艺). Agricultural Engineering(农业工程), 2024, 14(1): 108.
[29] ZHANG Lu, RU Chen-lei, YIN Wen-jun, et al(张 璐, 茹晨雷, 殷文俊, 等). Chinese Journal of Pharmaceutical Analysis(药物分析杂志), 2021, 41(4): 726.
[30] Liu X L, Wu Z Y, Zhao Q, et al. Analytical Methods, 2025, 17(6): 1334.
[31] Zhang Z Y, Wang Y J, Yan H, et al. Journal of Analytical Methods in Chemistry, 2021, 2021: 8875876.
[32] Gao X, Dong W L, Ying Z H, et al. Food Chemistry, 2024, 460(3): 140737.
[33] Liu Z M, Yang S B, Wang Y Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 258: 119872.
[34] CHEN Feng-xia, YANG Tian-wei, LI Jie-qing, et al(陈凤霞, 杨天伟, 李杰庆, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(12): 3839.
[35] LIU Ting-kai, HU Zi-kang, LONG Wan-jun, et al(刘庭恺, 胡子康, 龙婉君, 等). Chemical Reagents(化学试剂), 2022, 44(7): 952.
[36] Zhou Y H, Zuo Z T, Xu F R, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117619.
[37] Wang Y, Wang Y Z. Journal of Food Science, 2024, 89(11): 7172.
[38] Zhang J X, Li X L, Yan Y Q, et al. Microchemical Journal, 2024, 207: 111946.
[39] SUN Cheng-yu, JIAO Long, YAN Na-ying, et al(孙成玉, 焦 龙, 闫娜莹, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(10): 3098.
[40] Ping J C, Hao N, Guo X T, et al. Food Research International, 2025, 204: 115925.
[41] Bian X H, Wang K Y, Tan E X, et al. Chemometrics and Intelligent Laboratory Systems, 2020, 197: 103916.
[42] Chen H, Lin Z, Tan C. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161: 239.
[43] YU Mei, LI Shang-ke, YANG Fei, et al(余 梅, 李尚科, 杨 菲, 等). Journal of Instrumental Analysis(分析测试学报), 2021, 40(1): 65.
[44] Yuan T J, Zhao Y L, Zhang J, et al. Scientific Reports, 2018, 8(1): 89.
[45] Hao J, Dong F J, Li Y L, et al. Infrared Physics and Technology, 2022, 125: 104286.
[46] Li R, Liu Y, Xia Z Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 303: 123198.
[47] Bian X H, Liu Y X, Xie J Q, et al. Journal of Applied Research on Medicinal and Aromatic Plants, 2025, 46: 100640.
[48] BIAN Xi-hui, ZHANG Ke-xin, LING Meng-xuan, et al(卞希慧,张可欣,凌梦旋, 等). Metallurgical Analysis(冶金分析), 2024, 44(10): 10.
[49] Yan T Y, Duan L, Chen X P, et al. RSC Advances, 2020, 10(68): 41936.