Abstract:Traditional color reproduction methods often suffer from complex preprocessing steps and reliance on subjective selection of spectral features. Moreover, the exclusive use of spectral reflectance data neglects spatial information, limiting reconstruction to isolated color points rather than full scenes. To overcome these limitations, this study proposes a deep learningbased method using a Residual-Convolutional Autoencoder (Res-CAE) to jointly extract and reconstruct spatial and spectral features from hyperspectral data cubes. The Res-CAE model was trained on the CAVE hyperspectral dataset and evaluated across five testing scenarios: a standard 24-color chart (X-Rite), a custom Chinese painting color chart, in-training and out-of-training random scenes, and a real Chinese painting scene captured under CIE standard observer conditions. Evaluation metrics included color difference (ΔE00), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). Experimental results demonstrate that Res-CAE outperforms traditional methods, such as bilinear interpolation and principal component analysis (PCA), in both color fidelity and image quality. On the 24-color chart, the model achieved an average ΔE00 of 0.694 5, RMSE of 0.009 2, PSNR of 35.92, and SSIM of 0.995 6. These results validate the effectiveness of Res-CAE in high-fidelity color reconstruction from hyperspectral data, offering practical value for digital preservation of traditional Chinese paintings.
Key words:Hyperspectral data; Colorrecon struction; Spectral reflectance reconstruction; Deep learning
朱世豪,冯 洁,李欣庭,孙丽存,刘 洁,袁 娉,杨仁翔,邓红杨. 基于Res-CAE深度学习实现高光谱图谱融合的国画重建[J]. 光谱学与光谱分析, 2025, 45(09): 2428-2436.
ZHU Shi-hao, FENG Jie, LI Xin-ting, SUN Li-cun, LIU Jie, YUAN Ping, YANG Ren-xiang, DENG Hong-yang. Reconstruction of Chinese Paintings Based on Hyperspectral Image
Fusion Using Res-CAE Deep Learning. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2428-2436.
[1] ZHOU Jie, DUAN Lian-ru(周 杰,段炼孺). Identification and Appreciation to Cultural Relics(文物鉴定与鉴赏), 2021, 198: 78.
[2] WANG Hong-mei(王红梅). Oriental Collection(东方收藏), 2021, (13): 76.
[3] XU Guo-bin, YU Yi-ming, LI Jie, et al(徐国彬,于艺铭,李 洁, 等). Laser & Optoelectronics Progress, 2022, 59(10): 81.
[4] CHENG Qing-biao, CHEN Guang-yun, WANG Da-wen, et al(程青彪, 陈广云, 王大文, 等). Optical Instruments(光学仪器), 2022, 44(3): 68.
[5] Zhang L H, Liang D, Zhang D W, et al. Journal of the Optical Society of Korea, 2016, 20(4): 515.
[6] Wang K, Wang H, Wang Z, et al. Cluster Computing, 2019, 22(S1): 493.
[7] YAN Li-xia, WU Fan(闫丽霞, 吴 凡). Computer Applications and Software(计算机应用与软件), 2014, 31(3): 207.
[8] ZHAO Hai, LI Hong-ning, CHEN Hao(赵 海, 李宏宁, 陈 豪). Acta Optica Sinica(光学学报), 2023, 43(9): 269.
[9] WANG Wen-ju, WANG Jiang-wei(王文举, 王江薇). Packaging Engineering(包装工程), 2020, 41(11): 254.
[10] Alvarez Gila A, Van de Weijer J, Garrote E. Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, 2017, 480.
[11] Arad B, Ben-Shahar O. Computer Vision—14th European Conference, ECCV 2016 Proceedings, PartVII14, Springer: 2016, 19.
[12] Cai Y, Lin J, Hu X, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 17502.
[13] Cai Y, Lin J, Hu X, et al. Proceedings European Conference on Computer Vision, Springer, 2022, 686.
[14] Cai Y, Lin J, Lin Z, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 745.
[15] Urban P, Rosen M R, Berns R S. Journal of the Optical Society of America A, 2009, 26(8): 1865.
[16] LIU Peng-fei, ZHAO Huai-ci, LI Pei-xuan(刘鹏飞, 赵怀慈, 李培玄). Infrared and Laser Engineering(红外与激光工程), 2020, 49(S1): 143.
[17] LI Xin-ting, ZHANG Feng, FENG Jie(李欣庭, 张 峰, 冯 洁). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2024, 44(1): 215.
[18] Li Y, Hu J, Zhao X, et al. Neurocomputing, 2017, 266: 29.
[19] Shi Z, Chen C, Xiong Z, et al. Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition Workshops, 2018, 939.
[20] Hu X, Cai Y, Lin J, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 17542.
[21] Huang T, Dong W, Yuan X, et al. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 16216.