Solvent Effect on the Excited State Intramolecular Proton Transfer Process of 2,2′-bipyridine-6,6′-dicarboxylic Acid
Gulimire Yaermaimaiti1, 2, SONG Xin-tian1, AN Huan1, Bumaliya Abulimiti1*, XIANG Mei1*
1. Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
2. School of Mechanical and Electrical Engineering, Xinjiang Vocational & Technical College of Communications, Urumqi 831401, China
Abstract:In this study, we used time-dependent density functional theory (TD-DFT) to calculate 2,2′-bipyridine-6 at the Cam-b3lyp / 6-31G (d, p) theoretical level. The bond length, bond angle, infrared (IR) vibration spectrum, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) of 2,2′-bipyridine-6,6′-dicarboxylic acid (BP6DC) in cyclohexane, dichloromethane, and dimethyl sulfoxide solvents were studied. In addition, the hole-electron orbitals of BP6DC in these three different solvent environments were simulated by Multiwfn and VMD software. At the experimental level, we measured its absorption and emission spectra using a steady-state spectrometer. Our results show that in cyclohexane (CYH) solvent, due to the inherent symmetry of the BP6DC molecule, the changes of parameters (bond length, bond angle) related to two hydrogen bonds O12—H18…N10 and O24—H25…N19 are consistent. On the contrary, in dichloromethane (DCM) and dimethyl sulfoxide (DMSO) solvents, the change of bond length and bond angle showed the opposite trend. Through the analysis of the potential energy surface, the effect of solvent polarity on the hydrogen bond in the excited state of the BP6DC molecule was explained. We conclude that BP6DC can undergo excited-state double proton transfer in cyclohexane solution. On the contrary, in DCM and DMSO solutions, the molecular symmetry is destroyed, resulting in only a single proton transfer, and this single proton transfer has dual channel characteristics.
Key words:2,2′-bipyridine-6,6′-dicarboxylic acid(BP6DC); Excited state intramolecular double proton transfer (ESIDPT); Solvent effect
古丽米热·亚尔麦麦提,宋鑫甜,安 桓,布玛丽亚·阿布力米提,向 梅. 溶剂效应对2,2′-联吡啶-6,6′-二甲酸激发态分子内质子转移过程的影响[J]. 光谱学与光谱分析, 2025, 45(11): 3113-3121.
Gulimire Yaermaimaiti, SONG Xin-tian, AN Huan, Bumaliya Abulimiti, XIANG Mei. Solvent Effect on the Excited State Intramolecular Proton Transfer Process of 2,2′-bipyridine-6,6′-dicarboxylic Acid. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(11): 3113-3121.
[1] GUAN Yan-long, JU Li-ping(管延隆, 鞠丽平). Jiangxi Chemical Industry(江西化工), 2023, 39: 75.
[2] CHEN Li-yan, WU Di(陈黎艳, 吴 迪). Analytical Chemistry(分析化学), 2021, 49(8): 1350.
[3] D'Cunha R, Crawford T D. The Journal of Physical Chemistry A, 2021, 125: 3095.
[4] Yaermaimaiti G, An H, Kadir A, et al. Results in Chemistry, 2024, 7: 101318.
[5] Dalal A, Hooda A, Nehra K, et al. Journal of Molecular Structure, 2022, 1265: 133343.
[6] Yang W Y, Lai R C, Wu J J, et al. Advanced Functional Materials, 2022, 32: 2204129.
[7] Lu X L, He W. Chinese Journal of Analytical Chemistry, 2021, 49(2): 184.
[8] Chung M W, Lin T Y, Hsieh C C, et al. The Journal of Physical Chemistry A, 2010, 114: 7886.
[9] Jia M, Yang G, Song X Y, et al. Journal of Physical Organic Chemistry, 2019, 32: e3894.
[10] Jacquemin D. Journal of Chemical Theory and Computation, 2016, 12: 3993.
[11] Elroby S A, Aloufi K H, Aziz S G, et al. Results in Chemistry, 2023, 6: 101034.
[12] Soares C, Ley A R, Zehner B C, et al. Physical Chemistry Chemical Physics, 2022, 24: 2371.
[13] Wang W, Marshall M, Collins E, et al. Nature Communications, 2019, 10: 1170.
[14] Liu Y H, Mehata M S, Liu J Y. The Journal of Physical Chemistry A, 2011, 115: 19.
[15] Li X X, Wang Q J, Song L Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 279: 121377.
[16] Taylor C A, El-Bayoumi A, Kasha M. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(2): 253.
[17] Ma M, Wang Y, Sun C F. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 308: 123689.
[18] Yang D, Liu C, Zhang M Y, et al. Molecules, 2024, 29: 461.
[19] Gao J A, Mu H Y, Zhen Q, et al. Journal of Molecular Structure, 2023, 1294: 136406.
[20] Ushakou D, Journal of Luminescence, 2023, 263: 120032.
[21] TAN Si-hui, LUO Huan, ZHONG Guo-qing(谭思慧, 罗 欢, 钟国清). Chemical World(化学世界), 2023, 64(1):36.
[22] Luo W F, Liu W S. Journal of Materials Chemistry B, 2016, 4: 3911.
[23] Zhao J F, Yang Y. Journal of Molecular Liquids, 2016, 220: 735.
[24] Ju J W, Wang Y T, Chen B B, et al. ACS Applied Materials & Interfaces, 2018, 10(16): 13588.
[25] Oftadeh M, Barfarakh Z, Ravari F. Journal of Molecular Graphics and Modelling, 2021, 107: 107948.
[26] Ortiz-sánchez J M, Gelabert R, Moreno M, et al. ChemPhysChem, 2007, 8: 1199.
[27] Borowicz P, Grabowska A, Wortmann R, et al. Journal of Luminescence, 1992, 52: 265.
[28] Sobolewski A L, Adamowicz L. Chemical Physics Letters, 1996, 252: 33.
[29] Borisova N E, Ivanov A V, Kharcheva A V, et al. Molecules, 2020, 25: 62.
[30] Rok M, Moskwa M, Dopieralski P, et al. CrystEngComm, 2020, 22: 6811.
[31] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 Revision A. 03, Gaussian, Inc., Wallingford US, 2016.
[32] Vérité P M, Hédé S, Jacquemin D. Physical Chemistry Chemical Physics, 2019, 21: 17400.
[33] Li S T, Cao Y H, Dong H. Journal of Physical Organic Chemistry, 2023, 36: e4432.
[34] Lu T, Chen F. Journal of Computational Chemistry, 2012, 33: 580.
[35] Lu T, Chen Q X. Chemistry-Methods, 2021, 1(5): 231.
[36] Kujawski J, Czaja K, Jodłowska-siewert E, et al. Journal of Molecular Structure, 2017, 1146: 259.
[37] Kurdyukova I V, Ishchenko A A, Mysyk D D. Dyes and Pigments, 2017, 142: 201.
[38] Zhao G J, Shi W, Yang Y F, et al. The Journal of Physical Chemistry A, 2021, 125: 2743.
[39] Togasaki K, Arai T, Nishimura Y. Photochemical & Photobiological Sciences, 2021, 20: 523.
[40] Johnson E R, Keinan S, Mori-Sanchez P, et al. Journal of the American Chemical Society, 2010, 132: 6498.