Preparation and Luminescence Performance of Li2Mg3TiO6:Sm3+
Orange-Red Phosphor
LI Peng-cheng1, LI Zhao2*, WANG Wei-gang2, ZHOU Jun3*
1. College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. School of Materials Engineering, Xi'an Aeronautical Institute, Xi'an 710077, China
3. School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract:A series of Li2Mg3TiO6:xSm3+ (0.005≤x≤0.010) orange-red phosphors was prepared using the high-temperature solid-state method. The luminescent transition mechanism of the phosphor was analyzed, and the packaging of LED devices was conducted. The results indicate that the Li2Mg3TiO6:Sm3+ prepared by the high-temperature solid-state method has a pure phase, uniform particle distribution, and an average particle size of 3 μm. The main excitation peak of Li2Mg3TiO6:Sm3+ is 344 nm, and the main emission peak is 677 nm, with an optimal doping concentration of 5%. At 350 K, the relative luminescent intensity of the sample is 63.5%, and the thermal activation energy ΔE is 0.363 eV. The color coordinates of Li2Mg3TiO6:0.05Sm3+ calculated by CIE are located in the red-light region (0.630 8, 0.358 4). The packaged LED device emits red light with good color rendering Li2Mg3TiO6:Sm3+ red phosphor is expected to be used in white light LEDs.
Key words:High-temperature solid-phase method; Red phosphor; Li2Mg3TiO6:Sm3+;Devices
[1] Valappil J S, Puthiyaveetil V V, Kottianmadathil S C, et al. Zeitschrift für Naturforschung A, 2024, 79(5): 503.
[2] Farooq M, Rasool M H, Rafiq H, et al. Ceramics International, 2024, 50(12): 21118.
[3] Rafiq H, Farooq M, Rubab S, et al. Journal of Electronic Materials, 2024, 53(6): 2929.
[4] Sun X K, Huang Z Z, Guo Y H, et al. Journal of Luminescence, 2020, 219: 116925.
[5] Song Y Y, Guo N, Li J, et al. Ceramics International, 2020, 46(14): 22164.
[6] Nantharak W, Wattanathana W, Klysubun W, et al. Journal of Alloys and Compounds, 2017, 701: 1019.
[7] Chung H T, Kim J G, Kim H G. Solid State Ionics, 1998, 107(1-2): 153.
[8] Ma J L, Cheng Q, Fu Z F, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20444.
[9] Wu J X, Wu B L, Wang Q Q, et al. Optical Materials, 2024, 153: 115556.
[10] Anu, Kumari S, Deopa N, et al. Journal of Physics D: Applied Physics, 2024, 57(31): 315107.
[11] Kottianmadathil S C, Valappil J S, Puthiyaveetil V V, et al. Zeitschrift für Naturforschung A, 2023, 78(10): 959.
[12] WANG Qing-ling, Dilare Halimulati, SHEN Yu-ling, et al(王庆玲,迪拉热·哈力木拉提,沈玉玲,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(4): 1013.
[13] Herrmann A, Zekri M, Maalej R, et al. Materials, 2023, 16(2): 564.
[14] Vijayalakshmi L, Kwon S J. Ceramics International, 2024, 50(3PB): 5728.
[15] Devi S, Dalal M, Dalal J, et al. Ceramics International, 2019, 45(6): 7397.
[16] Geng X, Xie Y, Chen S S, et al. Chemical Engineering Journal, 2021, 410: 128396.
[17] Kiwsakunkran N, Chanthima N, Kim H J, et al. Integrated Ferroelectrics, 2023, 239(1): 135.
[18] Yang Z F, Ye M J, Yang S Y, et al. Ceramics International, 2024, 50(12): 21745.
[19] Pan F, Liu Y Y, Tu C Y. Journal of Luminescence 2025, 280: 121117.
[20] Niu C H, Deng Y J. Journal of Luminescence, 2018, 204: 528.
[21] Li C Y, Huang C C, Huang C L. Ceramics International, 2025, 51(13): 17718.
[22] Liu S Y, Gao D, Chen X, et al. Journal of Luminescence, 2025, 281: 121172.
[23] Song Hongji, Li Junhao. Ceramics International, 2025, 51(15): 20709.
[24] Xiang Y F, Yang L, Liao C Y, et al. Journal of Advanced Ceramics,2023, 12(4): 848.
[25] Wang Q, Wen J, Zheng J Y, et al. Journal of Luminescence,2022, 252: 119306.
[26] Thammanna B M, Viswanathan K, Nagaswarupa H P, et al. Materials Today: Proceedings, 2017, 4(11): 12306.
[27] Jiang D C, Geng L, Zhou S S, et al. Inorganic Chemistry Communications, 2022, 142: 109668.
[28] Zhu G, Li Z W, Zhou F G, et al. Journal of Luminescence, 2018, 196: 32.
[29] Neharika, Singh V K, Sharma J, et al. Journal of Alloys and Compounds, 2018, 738: 97.
[30] Manhas M, Kumar V, Singh V K, et al. Current Applied Physics, 2017, 17(11): 1369.