Research on Remote Sensing Extraction of Artificial Surface in Lhasa City Based on Spectral Features
WANG Jin-zhi1, ZHOU Guang-sheng2*, LÜ Xiao-min2, REN Hong-rui1
1. Department of Geomatics, Taiyuan University of Technology, Taiyuan 030024, China
2. Chinese Academy of Meteorological Sciences, Beijing 100081, China
Abstract:The Qinghai-Tibet Plateau holds a crucial position in the global ecosystem. As its core city, Lhasa City stands as a representative focal point for studying the delicate balance between urban development levels and ecosystem service capacities. This study was conducted on the Google Earth Engine (GEE) cloud platform, utilizing Sentinel-2, VIIRS, and SRTM remote sensing imagery data. Based on spectral data combined with terrain and texture features, the study extracted artificial surfaces in Lhasa City through Pixel-Based (PB) and Object-Oriented (OO)classification methods. To compare the performance of different parts of the method, this study conducted a comparative analysis of three groups: OO or PB classification, inclusion or exclusion of texture features, and using Random Forest (RF) or Support Vector Machine (SVM) classifiers. The results showed that Based on the same spectral features, the best extraction result can be obtained by not using texture features in the RF classifier in the OO method (OO_RF), with an Overall Accuracy (OA) of 98.03%, a Kappa Coefficient of 0.952 0, a User Accuracy (UA) of 0.944 4, and a Producer Accuracy (PA) of 0.988 4. The effect of texture features in extracting artificial surfaces is relatively weak, with only slight improvements observed in PB methods. Specifically, the OA increased by 0.51% when using the RF classifier (PB_RF) and 0.68% when using the SVM classifier (PB_SVM). The RF classifier performed the best in this study, avoiding over estimation and identifying non-artificial surfaces within cities more accurately. In conclusion, this study provides a reference for extracting artificial surface information regarding methods and parameter settings at the urban scale. Using result data allows for further analysis and dynamic monitoring, which has practical application significance.
Key words:Object-Oriented; Pixel-Based; Spectral features; Google Earth Engine; Artificial surface
王金枝,周广胜,吕晓敏,任鸿瑞. 基于光谱特征的拉萨市人造地表遥感提取研究[J]. 光谱学与光谱分析, 2025, 45(04): 1061-1070.
WANG Jin-zhi, ZHOU Guang-sheng, LÜ Xiao-min, REN Hong-rui. Research on Remote Sensing Extraction of Artificial Surface in Lhasa City Based on Spectral Features. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1061-1070.
[1] Tassi A, Gigante D, Modica G, et al. Remote Sensing, 2021, 13(12): 2299.
[2] Zhuo L, Shi Q L, Tao H Y, et al. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142: 64.
[3] Zhang B, Shi Y T, Wang S. Journal of Resources and Ecology, 2022, 13(1): 68.
[4] Foley J A, DeFries R, Asner G P, et al. Science, 2005, 309(5734): 570.
[5] Lautenbach S, Kugel C, Lausch A, et al. Ecological Indicators, 2011, 11(2): 676.
[6] Ban Y F, Jacob A. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 1998.
[7] WANG Xiao-na, TIAN Jin-yan, LI Xiao-juan, et al(王小娜, 田金炎, 李小娟,等). National Remote Sensing Bulletin(遥感学报), 2022, 26(2): 299.
[8] Gorelick N, Hancher M, Dixon M, et al. Remote Sensing of Environment, 2017, 202: 18.
[9] European Commission GHSL Data Package 2023, Publications Office of the European Union, Luxembourg, 2023, doi: 10.2760/098587.
[10] Ren H Q, Liu Y, Chang X Y, et al. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7288.
[11] Chen J, Chen J, Liao A P, et al. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7.
[12] Chen X H, Cao X, Liao A P, et al. Science China Earth Sciences, 2016, 59(12): 2295.
[13] Nery T, Sadler R, Solis-Aulestia M, et al. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 5165.
[14] ZHANG Yi-li, LI Xiu-bin, FU Xiao-feng, et al(张镱锂, 李秀彬, 傅小锋,等). Acta Geographica Sinica(地理学报), 2000, 55(4): 395.
[15] NIE Yu, YANG Yan-min, WANG Yi-hang, et al(聂 宇, 杨彦敏, 王一航,等). Acta Ecologica Sinica(生态学报), 2022, 42(6): 2202.
[16] WANG Hao, LU Shan-long, WU Bing-fang, et al(王 浩, 卢善龙, 吴炳方,等). Advances in Earth Science(地球科学进展), 2013, 28(3): 327.
[17] Shao Z F, Cheng T, Fu H Y, et al. Remote Sensing, 2023, 15(10): 2562.
[18] LIU Tong, REN Hong-rui(刘 通, 任鸿瑞). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2022, 38(12): 189.
[19] WANG Chao, KAN Ai-ke, ZENG Ye-long, et al(王 超, 阚瑷珂, 曾业隆,等). Acta Geographica Sinica(地理学报), 2019, 74(4): 664.
[20] LI Feng, ZHANG Xiao-bo, LIAO Shun-bao, et al(李 峰, 张晓博, 廖顺宝,等). Bulletin of Surveying and Mapping(测绘通报), 2020, (9): 89.
[21] Zhuo L, Zheng J, Zhang X F, et al. International Journal of Remote Sensing, 2015, 36(16): 4114.
[22] Zhang Q L, Seto K C. Remote Sensing of Environment, 2011, 115(9): 2320.
[23] Kalnay E, Cai M. Nature, 2003, 423: 528.
[24] de Leeuw J, Jia H, Yang L, et al. International Journal of Remote Sensing, 2006, 27(1): 223.
[25] Cortes C, Vapnik V. Machine Learning, 1995, 20: 273.
[26] Breiman L. Machine Learning, 2001, 45: 5.
[27] WANG Meng, ZHANG Xin-chang, WANG Jia-yao, et al(王 猛, 张新长, 王家耀,等). Acta Geodaetica et Cartographica Sinica(测绘学报), 2020, 49(2): 235.
[28] DU Shang-hai, GU Cheng-ke, ZHANG Wen-jing(杜尚海, 古成科, 张文静). China Environmental Science(中国环境科学), 2022, 42(9): 4285.
[29] GU Hai-yan, YAN Li, LI Hai-tao, et al(顾海燕,闫 利,李海涛,等). Geomatics and Information Science of Wuhan University(武汉大学学报·信息科学版), 2016, 41(2): 228.
[30] Achanta R, Shaji A, Smith K, et al. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274.
[31] Tassi A, Vizzari M. Remote Sensing, 2020, 12(22): 3776.
[32] Duro D C, Franklin S E, Dubé M G. Remote Sensing of Environment, 2012, 118: 259.
[33] Gong P, Liu H, Zhang M N, et al. Science Bulletin, 2019, 64(6): 370.
[34] Zhang X, Liu L Y, Zhao T T, et al. Earth System Science Data, 2022, 14(4): 1831.