Application of in Situ X-Ray Diffraction Spectroscopy in Crystal Structure Analysis of High-Entropy Pseudobrookite Ceramics
MA Xiao-hui1, LIU Jia-chen1, WU Jin-yu1, MAO Jing1, HU Xiao-xia2, GUO An-ran1
1. School of Material Science and Engineering, Tianjin University, Tianjin 300350, China
2. Analysis and Testing Center, Tianjin University, Tianjin 300072, China
Abstract:Present research on high-entropy ceramics focuses primarily on creating high-performance ceramics by element substitution or addition. It often ignores changes in the crystal structure of high-entropy ceramics due to the complexity of the composition and their effects on properties. This work systematically studies the formation process, crystal structure change, and effect on the thermal expansion coefficient of high-entropy pseudobrookite using in-situ X-ray diffraction spectroscopy. The results show that the formation process of high-entropy pseudobrookite ceramics is a slow solid-phase reaction. Compared to its corresponding single-phase ceramic, the lattice constants of high-entropy (Mg,Co,Ni,Zn)Ti2O5 change, with the a-axis and b-axis lattice constants slightly increasing and the c-axis lattice constants decreasing. Additionally, as the temperature rises, the increasing lattice constants along each crystal axis weaken, reducing the thermal expansion coefficient and anisotropy of the thermal expansion coefficient. These findings show that the in-situ X-ray diffraction spectroscopy technique effectively elucidates the crystal structure evolution process and its impact on properties during the formation of high-entropy pseudobrookite ceramics. Moreover, all the above results indicate that this technique shows great promise for resolving high-entropy ceramic crystal structures and advancing their application prospects.
Key words:In-situ X-ray diffraction; High entropy ceramics; Crystal structure; Coefficient of thermal expansion
马晓晖,刘家臣,武劲宇,毛 晶,胡小侠,郭安然. 原位X射线衍射光谱技术在高熵假板钛矿陶瓷晶体结构解析中的应用[J]. 光谱学与光谱分析, 2025, 45(02): 443-447.
MA Xiao-hui, LIU Jia-chen, WU Jin-yu, MAO Jing, HU Xiao-xia, GUO An-ran. Application of in Situ X-Ray Diffraction Spectroscopy in Crystal Structure Analysis of High-Entropy Pseudobrookite Ceramics. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 443-447.
[1] Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6(1): 8485.
[2] Xiang Huimin, Xing Yan, Dai Fuzhi, et al. Journal of Advanced Ceramics, 2021, 10: 385.
[3] Li Haoyu, Zhou Yue, Liang Zhihao, et al. Coatings, 2021, 11(6): 628.
[4] LU Nan, HE Peng-fei, ZHONG Xiao-yu, et al(鲁 楠, 何鹏飞, 种晓宇, 等). Journal Aerospace Materials & Technology(宇航材料工艺), 2023, 53(1): 1.
[5] LIU Qian, LIU Han-lian, HUANG Chuan-zhen, et al(刘 倩, 刘含莲, 黄传真, 等). Tool Engineering(工具技术), 2023, 57(9): 16.
[6] Sun Yannan, Xiang Huimin, Dai Fuzhi, et al. Journal of Advanced Ceramic, 2021, 10: 596.
[7] Harrington T J, Gild J, Sarker P, et al. Acta Mater, 2019, 166: 271.
[8] Gild J, Braun J, Kaufmann K, et al. Journal of Materiomics, 2019, 5: 337.
[9] Liu Xuening, Su Congxuan, Zhong Ya, et al. Journal of the European Ceramic Society, 2022, 42(13): 5964.
[10] Jasiewicz K, Cieslak J, Kaprzyket S, et al. Journal of Alloys and Compounds, 2015, 648: 307.
[11] Yang Chengchao, Wu Haorong, Song Hongyuan, et al. Journal of Alloys and Compounds, 2023, 940: 168802.
[12] MAO Jing, GUO Qian-ying, MA Li-li, et al(毛 晶, 郭倩颖, 马利利, 等). Analysis and Testing Technology and Instruments(分析测试技术与仪器),2023, 29(1): 111.
[13] XU Ming-kun, LIN Jia-xiang, ZHANG Xiao-lin, et al(徐明锟, 林嘉翔, 张效琳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(5): 1426.
[14] Kornaus K, Rutkowski P, Lach R, et al. Journal of European Ceramic Society, 2021, 41: 1498.
[15] Nakagoshi Y, Suzuki Y. Journal of Asian Ceramic Societies, 2015, 3: 334.
[16] Cleveland J J, Bradt R C. Journal of the American Ceramic Society, 1978, 61(11-12): 478.
[17] Suzuki Y, Shinoda Y. Science and Technology of Advanced Materials, 2011, 12: 034301.
[18] Wu Jinyu, Ma Xiaohui, Hu Xiaoxia, et al. Journal of Advanced Ceramics, 2022, 11(10):1654.
[19] GUO Yu, HUANG Zhi-wei, HU Yu-qing, et al(郭 宇, 黄志伟, 胡雨青, 等). Acta Physico-Chimica Sinica(物理化学学报),2024, doi: 10.3866PKU.WHXB202311015.
[20] Wang Meili, Shi Guanghua, Qin Jiaqian, et al. European Journal of Mineralogy, 2018, 30(5): 939.
[21] Post J E, Veblen D R. American Mineralogist, 1990, 75(5-6): 477.
[22] DAI Chao-hua, CHENG Zhen-jin, ZHOU Jun-ru(戴超华, 成震今, 周君儒). Metallurgical Analysis(冶金分析). 2022, 42(12): 72.
[23] Wang Hejing, Zhou Jian. Journal of Applied Crystallography, 2000, 33(4): 1128.
[24] Mittal V K, Chandramohan P, Bera S, et al. Solid State Communications, 2006, 137(1-2): 6.
[25] Jagtap N, Bhagwat M, Awati P, et al. Thermochimica Acta, 2005, 427(1-2): 37.
[26] ZHAO Miao, ZHOU Yan, FU Bin, et al(赵 淼, 周 严, 傅 斌, 等). Journal of Tianjin Normal University: Natural Science Edition[天津师范大学学报(自然科学版)],2005,(4): 37.