1. Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
2. Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
3. School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
4. School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
Abstract:Composite materials, due to their advantages such as high strength, low weight, and corrosion resistance, are widely used in various industries, including aerospace, construction, and marine. However, during the production or use of composite materials, it is inevitable that they may suffer damage and degradation, leading to a decrease in material performance and potential safety hazards. Therefore, researching non-destructive testing (NDT) methods to detect the types and extents of damage inside the materials has become a hot topic in recent years. The advantage of Terahertz (THz) technology lies in its sensitivity to the chemical composition and crystal structure of materials. Detailed information about the internal conditions of materials, such as defect types, sizes, and distributions, can be obtained by analyzing the frequency spectrum and phase information of THz waves. This is crucial for quality control and performance assessment of composite materials. First, this paper outlines the basic principles of composite materials, which commonly use NDT and THz techniques. Secondly, it categorizes the defects such as delamination, inclusions, porosity, impact damage, thermal damage, etc., which occur during the manufacturing or use of composite materials and focuses on applying THz technology in detecting different defect types. Then the challenges faced by THz technology in composite defect detection are summarized, including the limited resolution of THz imaging, which makes it difficult to provide sufficient detailed information, the non-uniformity of composite structure that leads to the complexity and variety of THz wave propagation inside the composite material, and the existing defect identification techniques and equipment, which limit the application of THz in composite defect detection; Finally, an outlook on the future development direction is given, which includes improving the imaging system to increase the THz imaging resolution while reducing the detection time, combining artificial intelligence and deep learning techniques to improve the fast and accurate identification of different types of defects, improving the real-time data processing to achieve online inspection of composites, and optimizing the composite defect detection platform. These development directions will further promote the application of THz technology in composite materials, improve detection efficiency and accuracy, and promote the development of composite material manufacturing and application.
[1] Quast H, Keil A, Löffler T. IEEE 35th International Conference on Infrared, Millimeter and Terahertz Waves, 2010.
[2] Asmael M, Safaei B, Zeeshan Q, et al. The International Journal of Advanced Manufacturing Technology, 2021, 113: 3079.
[3] Stoik C D, Bohn M J, Blackshire J L. Optics Express, 2008, 16(21): 17039.
[4] Wang J, Zhang J, Chang T, et al. Infrared Physics & Technology, 2019, 98: 36.
[5] Lee J, Kim S. Measurement, 2020, 151: 107201.
[6] Zandonella C. Nature, 2003, 424(6950): 721.
[7] ZHOU Tong-yu, LI Li-juan, REN Jiao-jiao, et al(周桐宇, 李丽娟, 任姣姣, 等). Acta Optica Sinica(光学学报), 2020, 40(12): 1226002.
[8] ZHOU Yan, MU Kai-jun, ZHANG Yan-dong, et al(周 燕, 牧凯军, 张艳东, 等). Nondestructive Testing(无损检测), 2007, 29(5): 266.
[9] Destic F, Petitjean Y, Massenot S, et al. IEEE 35th International Conference on Infrared, Millimeter and Terahertz Waves, 2010.
[10] Destic F, Bouvet C. Case Studies in Nondestructive Testing and Evaluation, 2016, 6: 53.
[11] Dong J, Kim B, Locquet A, et al. Composites Part B: Engineering, 2015, 79: 667.
[12] WANG He-nan, REN Jiao-jiao, ZHANG Dan-dan, et al(王赫楠, 任姣姣, 张丹丹, 等). Acta Materiae Compositae Sinica(复合材料学报), 2021, 38(12): 4190.
[13] Ren J, Li L, Zhang D, et al. Applied Optics, 2016, 55(26): 7204.
[14] Xing L, Cui H, Shi C, et al. Polymer Testing, 2017, 57: 141.
[15] Zhang J Y, Ren J J, Li L J, et al. Optics Express, 2020, 28(14): 19901.
[16] Kim D H, Ryu C H, Park S H, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4: 211.
[17] Dai B, Wang P, Wang T, et al. Composite Structures, 2017, 168: 562.
[18] LIU Ling-yu, CHANG Tian-ying, YANG Chuan-fa(刘陵玉, 常天英, 杨传法). Infrared Technology(红外技术), 2018, 40(1): 79.
[19] Wu D, Haude C, Burger R, et al. Infrared Physics & Technology, 2019, 102: 102995.
[20] Wang Q, Li X, Chang T, et al. Infrared Physics & Technology, 2019, 97: 326.
[21] PAN Zhao, LI Zong-liang, ZHANG Zhen-wei, et al(潘 钊, 李宗亮, 张振伟, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(5): 1547.
[22] WANG Qiang, ZHAO Bo-yan, LIU Qiu-han, et al(王 强, 赵博研, 刘秋寒, 等). Acta Materiae Compositae Sinica(复合材料学报), 2023, 40(3): 1785.
[23] Stoik C, Bohn M, Blackshire J. NDT & E International, 2010, 43(2): 106.
[24] Zhang D D, Ren J J, Gu J, et al. Composite Structures, 2020, 251: 112624.
[25] Wang X, Xu Y, Cui Y, et al. Composite Structures, 2023, 322: 117412.
[26] Ryu C, Park S, Kim D, et al. Composite Structures, 2016, 156: 338.
[27] Han D H, Kang L H. Composite Structures, 2018, 185: 161.
[28] ZHANG Dan-dan, REN Jiao-jiao, LI Li-juan, et al(张丹丹, 任姣姣, 李丽娟, 等). Acta Photonica Sinica(光子学报), 2019, 48(2): 0212002.
[29] Yahng J S, Yee D S. Applied Sciences, 2021, 11(11): 4933.
[30] Xu Y, Wang X, Zhang L, et al. NDT & E International, 2021, 124: 102536.
[31] Wang Q, Liu Q, Xia R, et al. Infrared Physics & Technology, 2021, 115: 103673.
[32] Xu Y, Hao H, Citrin D S, et al. Composites Part B: Engineering, 2021, 225: 109285.
[33] Wang S, Tang J, Li X, et al. AOPC: Infrared Devices and Infrared Technology; and Terahertz Technology and Applications (Conference), 2023, 1255502.
[34] Nsengiyumva W, Zhong S, Luo M, et al. Chinese Journal of Mechanical Engineering, 2023, 36(1): 6.
[35] Wietzke S, Jördens C, Krumbholz N, et al. Journal of the European Optical Society-Rapid Publications, 2007, 2: 07013.
[36] Mieloszyk M, Majewska K, Ostachowicz W. Composite Structures, 2019, 209: 548.
[37] Wang J, Zhang J, Chang T, et al. Infrared Physics & Technology, 2019, 98: 36.
[38] XU Ya-jun, XIANG Hong-xing, ZHONG Mian, et al(徐亚军, 向红星, 钟 勉, 等). Electronic Measurement Technology(电子测量技术), 2022, 45(8): 58.
[39] Han D H. NDT & E International, 2023, 138: 102862.
[40] Ullmann T, Shi Y, Rahner N, et al. 4th International Symposium on NDT in Aerospace,2012.
[41] ZHOU Xiao-dan, LI Li-juan, ZHAO Duo, et al(周小丹, 李丽娟, 赵 铎, 等). Infrared and Laser Engineering(红外与激光工程), 2016, 45(8): 0825001.
[42] Ibrahim M E, Headland D, Withayachumnankul W, et al. Journal of Nondestructive Evaluation, 2021, 40(2): 37.
[43] Hlosta P, Nita M, Powala D, et al. Composite Structures, 2022, 279: 114770.
[44] Strag M, Swiderski W. Sixteenth International Conference on Quality Control by Artificial Vision. SPIE, 2023, 12749: 102.
[45] LIU Zeng-hua, WU Yu-heng, WANG Ke-xin, et al(刘增华, 吴育衡, 王可心, 等). Journal of Mechanical Engineering(机械工程学报), 2023, 59(14): 33.
[46] Liu H, Lin K. Optics & Laser Technology, 2017, 94: 240.
[47] Lu X, Shen Y, Xu T, et al. Composites Part B: Engineering, 2022, 242: 110058.
[48] XU Tuo, LU Xing-xing, SHEN Yan, et al(徐 拓, 路星星, 沈 雁, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2023, 42(2): 201.
[49] Zhang X C, Xu J. Introduction to THz Wave Photonics. New York: Springer, 2010.
[50] Chady T, Lopato P, Szymanik B. Journal of Sensors, 2012, 2012: 954867.
[51] Ospald F, Zouaghi W, Beigang R, et al. Optical Engineering, 2014, 53(3): 031208.
[52] Zhong M, Liu B, Li C, et al. Journal of Spectroscopy, 2020, 2020: 2312936.
[53] Pomarède P, Miqoi N, Christophe D, et al. Journal of Composite Materials, 2023, 57(30): 4719.
[54] LIAO Xiao-ling, LIU Yan-lei, WANG Hong, et al(廖晓玲, 刘延雷, 汪 宏, 等). Fiber Reinforced Plastics/Composites(玻璃钢/复合材料), 2015,(9): 35.
[55] LIAO Xiao-ling, WANG Qiang, GU Xiao-hong, et al(廖晓玲, 王 强, 谷小红, 等). Laser & Infrared(激光与红外), 2015, 45(10): 1255.
[56] GU Xiao-hong, CHEN Qiang, WANG Qiang, et al(谷小红, 陈 强, 王 强, 等). Journal of Safety and Environment(安全与环境学报), 2019, 19(2): 406.
[57] Hsu D, Lee K, Park J, et al. International Journal of Precision Engineering and Manufacturing, 2012, 13(7): 1183.
[58] Federici J F. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33: 97.
[59] Owens L, Bischoff M, Cooney A, et al. IEEE 36th International Conference on Infrared, Millimeter and Terahertz Waves, 2011.
[60] Rutz F, Koch M, Khare S, et al. International Journal of Infrared and Millimeter Waves, 2006, 27: 547.
[61] Jördens C, Scheller M, Wietzke S, et al. Composites Science and Technology, 2010, 70(3): 472.
[62] Im K H, Hsu D K, Chiou C P, et al. 38th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), AIP Conference Proceedings, 2012, 1430: 1192.
[63] Im K H, Hsu D K, Chiou C P, et al. Advances in Materials Science and Engineering, 2013, 2013: 563962.
[64] Rosa J C D L, Pomarède P, Antonik P, et al. NDT & E International, 2023, 136: 102799.
[65] Pomarède P, Calvo-de la Rosa J, Antonik P, et al. IEEE Transactions on Terahertz Science and Technology, 2023, 13(4): 396.
[66] Abina A, Puc U, Jeglič A, et al. NDT & E International, 2016, 77: 11.
[67] Zhang H, Sfarra S, Osman A, et al. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5629.
[68] Wang Q, Zhou H, Xia R, et al. IEEE Access, 2020, 8: 155529.
[69] Strg M, Swiderski W. Composite Structures, 2023, 306: 116588.
[70] Kim H S, Park D W, Kim S I, et al. Composites Part B: Engineering, 2023, 257: 110694.