Review of the Terahertz Metamaterial Devices Based on the
CiteSpace Software
DAI Lin-lin1, SU Jin1, KOU Fei-fei1*, QI Li-mei1, 2*, SUN Dan-dan1, SHI Dan1
1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
摘要: 超材料具备天然材料没有的电磁性质,基于超材料的太赫兹(THz)功能器件在生物分子检测、医学成像、安全检查等领域都具有广泛的应用前景。采用CiteSpace软件对2016年—2023年web of science网站上有关太赫兹超材料功能器件的参考文献进行了可视化分析,综述了THz超材料功能器件的研究进展、热点领域,并对其发展前景进行了预测,从而为从事相关研究的工作人员提供借鉴。此次分析共检索到紧密相关文献2 159篇。论文从发表文献的国家、机构和作者贡献、被引次数和关键词聚类等多方面分别进行了分析和讨论。得到了最近几年THz超材料功能器件的研究领域,主要包括吸波器、滤波器、电磁诱导透明、调制器、非对称传输、波前调控、编码超表面、机器学习、生物传感和量子纠缠超表面等。研究发现在THz超材料功能器件领域,中国发文量占所有文章总数的50%以上,英国、中国、美国这三个国家的影响力最高。通过对科研机构的合作网络分析,发现发文量排名前十位的科研机构均是中国单位,其中天津大学发文量占据第一位。通过对论文作者的共现分析和共被引分析,可以分别统计出作者的发文数量和影响力。为进一步研究THz超材料功能器件的研究热点,对关键词进行了聚类分析,得到了11个集群,总结了5个关键研究领域。最后给出了研究领域的分布图,以知识树的形式分析了各个领域的发展现状。其中吸波器、滤波器、调制器、电磁诱导透明等领域已经研究成熟。生物传感、非对称传输、天线等领域处于发展阶段,并逐渐成熟。机器学习、量子纠缠超表面成为未来的研究热点。
关键词:超材料;太赫兹;功能器件;CiteSpace
Abstract:Metamaterials have electromagnetic properties not found in natural materials, and terahertz (THz) metamaterial functional devices have wide application prospects in biomolecular detection, medical imaging, and security inspection. In this paper, we used CiteSpace software to visually analyze references on THz metamaterial functional devices on the Web of Science from 2016—2023 to review the research progress and hot areas and predict their development prospects to provide a reference for staff engaged in related research. A total of 2159 closely related literature were retrieved for this analysis. The papers are analyzed and discussed separately in terms of the published literature's country, institution, author contribution, citation number, and keyword clustering. The research areas of THz functional devices in recent years are obtained, mainly including absorbers, filters, electromagnetically induced transparency, modulators, asymmetric transmission, wavefront modulation, coding metasurfaces, machine learning, biosensing, quantum entangled metasurfaces, etc. In the field of THz metamaterial functional devices, China publishes more than 50% of all articles, and three countries, the UK, China, and the USA, had the highest impact. By analyzing the collaboration network of research institutions, it is found that the top ten research institutions in terms of the number of publications are all Chinese institutions, among which Tianjin University occupies the first place regarding the number of publications. Through the co-occurrence analysis and co-citation analysis of the papers' authors, the authors' number of publications and influence can be counted respectively. To further study the research hotspots of THz functional devices, we conducted a cluster analysis of keywords and obtained 11 clusters, summarizing 5 key research areas. Finally, a pie chart of the distribution of research fields is given, and the development status of each field is analyzed in the form of a knowledge tree. The fields of absorbers, filters, modulators, and electromagnetically induced transparency have been studied maturely, the fields of biosensing, asymmetric transmission, and antennas are in the development stage and gradually matured, and machine learning and quantum entangled metasurfaces will become hot research topics in the future.
戴林林,苏 晋,寇菲菲,亓丽梅,孙丹丹,石 丹. 基于CiteSpace软件分析的太赫兹超材料器件研究[J]. 光谱学与光谱分析, 2024, 44(04): 910-917.
DAI Lin-lin, SU Jin, KOU Fei-fei, QI Li-mei, SUN Dan-dan, SHI Dan. Review of the Terahertz Metamaterial Devices Based on the
CiteSpace Software. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 910-917.
[1] Liu Z, Bai B. Optics Express, 2017, 25: 8584.
[2] Wang L, Zhang Y, Guo X, et al. Nanomaterials, 2019, 9: 965.
[3] Matvejev V, Zhang Y, Stiens J. IET Microwaves, Antennas & Propagation, 2014, 8: 394.
[4] Vieweg N, Fischer B M, Reuter M, et al. Optics Express, 2012, 20: 28249.
[5] Johnson C L, Knighton B E, Johnson J A. Physical Review Letters, 2019, 122: 073901.
[6] Zhang Y, Wang C, Huai B, et al. Applied Sciences, 2021, 11: 71.
[7] Oh S J, Huh Y-M, Suh J-S, et al. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33: 74.
[8] Wang C, Shi F, Zhao M, et al. IEEE Sensors Journal, 2021, 21: 18955.
[9] Vella A, Houard J, Arnoldi L, et al. Science Advances, 2021, 7: eabd7259.
[10] Beruete M, Jáuregui‐López I. Advanced Optical Materials, 2020, 8: 1900721.
[11] Chen H T, O'Hara J F, Azad A K, et al. Laser & Photonics Reviews, 2011, 5: 513.
[12] Hashemi M R, Cakmakyapan S, Jarrahi M. Reports on Progress in Physics, 2017, 80: 094501.
[13] Xu W, Xie L, Ying Y. Nanoscale, 2017, 9: 13864.
[14] Al-Naib I, Withayachumnankul W. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38: 1067.
[15] Yen T J, Padilla W J, Fang N, et al. Science, 2004, 303: 1494.
[16] He J, Dong T, Chi B, et al. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41: 607.
[17] Tian H W, Shen H Y, Zhang X G, et al. Frontiers in Physics, 2020, 8: 584077.
[18] Zhou T, Cheng Z, Zhang H, et al. Microwave and Optical Technology Letters, 2014, 56: 1792.
[19] Shen Y, Kim A D, Shahili M, et al. Applied Physics Letters, 2021, 119: 181108.
[20] Zang X, Dong F, Yue F, et al. Advanced Materials, 2018, 30: 1707499.
[21] He Q, Sun S, Zhou L. Research, 2019, 2019: 1849272.
[22] Zhang Y X, Zeng H X, Kou W, et al. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378: 20190609.
[23] Zhang X G, Sun Y L, Zhu B, et al. Advanced Photonics, 2022, 4: 025001.
[24] Chen C. Journal of the American Society for Information Science and Technology, 2006, 57: 359.
[25] Chen C. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 5303.
[26] Hou L, Chen H, Zhang G (Kevin), et al. Applied Sciences, 2021, 11: 821.
[27] Synnestvedt M B, Chen C, Holmes J H. AMIA Annual Symposium Proceedings, 2005, 2005: 724.
[28] Zhang X, Zhang Y, Wang Y, et al. Ecological Modelling, 2021, 443: 109456.
[29] Chen X, Liu Y. Transport Policy, 2020, 85: 1.
[30] Yi S, Gao S. Open Journal of Social Sciences, 2021, 9: 311.
[31] Zhang Q, Wang Q, Hao J X, et al. in: , 2016 13th International Conference on Service Systems and Service Management (ICSSSM), 2016.
[32] Wu Y, Wang H, Wang Z, et al. Sustainability, 2020, 12: 66.
[33] Fang Y, Yin J, Wu B. Journal of Sustainable Tourism, 2018, 26: 108.
[34] Cantillo J, Martín J C, Román C. Aquaculture Research, 2021, 53: 136.
[35] Cui T J, Qi M Q, Wan X, et al. Light: Science & Applications, 2014, 3: e218.
[36] Zhang L, Liu S, Li L, et al. ACS Applied Materials & Interfaces, 2017, 9: 36447.
[37] Zhang L, Wu R Y, Bai G D, et al. Advanced Functional Materials, 2018, 28: 1802205.
[38] Liu S, Zhang H C, Zhang L, et al. ACS Applied Materials & Interfaces, 2017, 9: 21503.
[39] Rouhi K, Rajabalipanah H, Abdolali A. Annalen der Physik, 2018, 530: 1700310.
[40] Cui T J, Wu R Y, Wu W, et al. Journal of Physics D: Applied Physics, 2017, 50: 404002.
[41] Hu F, Guo W, Rong Q, et al. Journal of Lightwave Technology, 2021, 39: 2476.
[42] Jiang M, Hu F, Zhang L, et al. Journal of Lightwave Technology, 2021, 39: 3488.
[43] Wang B X, Wang G Z, Sang T, et al. Scientific Reports, 2017, 7: 41373.
[44] Wang X, Jiang X, You Q, et al. Photonics Research, 2017, 5: 536.
[45] Ding F, Zhong S, Bozhevolnyi S I. Advanced Optical Materials, 2018, 6: 1701204.
[46] Borisenko S, Gibson Q, Evtushinsky D, et al. Physical Review Letters, 2014, 113: 027603.
[47] Kotov O V, Lozovik Y E. Physical Review B, 2016, 93: 235417.
[48] Liu G D, Zhai X, Meng H Y, et al. Optics Express, 2018, 26: 11471.
[49] Meng H, Shang X, Xue X, et al. Optics Express, 2019, 27: 31062.
[50] Luo J, Lin Q, Wang L, et al. Optics Express, 2019, 27: 20165.
[51] Gupta M, Srivastava Y K, Manjappa M, et al. Applied Physics Letters, 2017, 110: 121108.
[52] Kim T T, Kim H D, Zhao R, et al. ACS Photonics, 2018, 5: 1800.
[53] Tang W, Wang L, Chen X, et al. Nanoscale, 2016, 8: 15196.
[54] Chen H, Zhang H, Liu M, et al. Optical Materials Express, 2017, 7: 3397.
[55] Ruan B, Guo J, Wu L, et al. Sensors, 2017, 17: 1924.
[56] Farmani A, Mir A, Bazgir M, et al. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104: 233.
[57] Keshavarz A, Vafapour Z. IEEE Sensors Journal, 2019, 19: 1519.
[58] Fan J, Cheng Y. Journal of Physics D: Applied Physics, 2020, 53: 025109.
[59] Cheng Y, Gong R, Wu L. Plasmonics, 2017, 12: 1113.
[60] Cheng Y, Chen H, Zhao J, et al. Optical Materials Express, 2018, 8: 1399.
[61] Kim M, Yao K, Yoon G, et al. Advanced Optical Materials, 2017, 5: 1700600.
[62] Wang T, Zhang H, Zhang Y, et al. Optics Express, 2020, 28: 17434.
[63] Xu S T, Hu F T, Chen M, et al. Annalen der Physik, 2017, 529: 1700151.
[64] Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100: 207402.
[65] Zhang S, Genov D A, Wang Y, et al. Physical Review Letters, 2008, 101: 047401.
[66] Liu M, Yin X, Ulin-Avila E, et al. Nature, 2011, 474: 64.
[67] Tripathi B K. Applied Intelligence, 2017, 47: 382.
[68] Ramezani S B, Sommers A, Manchukonda H K, et al in: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, Glasgow, United Kingdom,2020.
[69] Lehtinen J, Munkberg J, Hasselgren J, et al. arXiv: 1803.04189 [cs, stat], 2018.
[70] Zheludev N I. Science, 2010, 328: 582.