Abstract:To explore the potential of thermal infrared hyperspecra for retrieving sand content in soil, the sandy soil was measured using a 102F Fourier Transform Infrared Spectroradiometer (FTIR), and the characteristics of sandy soil’s emissivity spectra were discussed based on correlation analysis and principal component analysis. Moreover, the sand contents were predicted using two modeling methods: Partial least squares regression (PLSR) and principal component regression (PCR). The results show that the Reststrahlen feature(RF) of SiO2 is obvious in the emissivity spectra of sandy soil with two large asymmetrical absorption troughs near 8.13 and 9.17 μm and two small troughs in the region of 12~13 μm. Soil emissivity becomes lower when sand content increases, this trend is more evident especially in the regions of 8~9.5 μm and 9.5~10.4 μm of which correlation coefficients are above 0.65 and 0.5 respectively, and these two regions can account for 84.07% of total emissivity variance. Predictive precision varies significantly when sand content is predicted by different modeling methods or spectral variables. The PLSR model can achieve the highest predictive precision by using first-order derivative spectra, and it’s RMSE of modeling and prediction is 0.45 and 0.53 respectively, and the R2, 0.990 7 and 0.983 6, which means that the thermal hyperspectra has promising potential for retrieving sand content in soil.
黄启厅,史 舟,潘桂颖,周炼清*,纪文君. 沙质土壤热红外高光谱特征及其含沙量预测研究[J]. 光谱学与光谱分析, 2011, 31(08): 2195-2199.
HUANG Qi-ting, SHI Zhou, PAN Gui-ying, ZHOU Lian-qing*, JI Wen-jun . Characteristics of Thermal Infrared Hyperspectra and Prediction of Sand Content of Sandy Soil . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(08): 2195-2199.
[1] XIAO Hai-tao, SHEN Bo, JIANG Guo-hua, et al(肖海涛,沈 波,姜国华, 等). Research of Soil and Water Conservation(水土保持研究), 2003, 17(2): 131. [2] Konrad J K, Buettner, Clifford D K. Journal of Geophysical Research, 1965, 70: 1329. [3] Salisbury J W, D’aria D M. Remote Sensing of Environment, 1992a, 42: 157. [4] Salisbury J W, D’aria D M. Remote Sensing of Environment, 1992b, 42: 83. [5] LIU Qin-huo, XU Xi-ru(柳钦火,徐希孺). Journal of Remote Sensing(遥感学报), 1998, 2(1): 1. [6] TANG Shi-hao, ZHU Qi-jiang, SU Li-hong(唐世浩,朱启疆,苏理宏). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2005, 24(4): 286. [7] TANG Xin-zhai, ZHANG Ren-hua, SU Hong-bo, et al(唐新斋, 张仁华, 苏红波, 等). Journal of Remote Sensing(遥感学报), 2000, 4(1): 1. [8] WANG Hui, PAN Yi, LI Hua, et al(王 珲, 盘 毅, 李 华, 等). Infrared Technology(红外技术), 2009, 31(4): 210. [9] ZHANG Ren-hua, TIAN Guo-liang(张仁华, 田国良). Chinese Science Bulletin(科学通报), 1981, (5): 297. [10] CHENG Jie, LIU Qin-huo, LI Xiao-wen, et al(程 洁, 柳钦火, 李小文, 等). Science in China(中国科学), 2008, 38(2): 261. [11] WANG Xian-bing, YANG Shi-zhi, QIAO Yan-li, et al(王先兵, 杨世植, 乔延利, 等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2006,1(2): 105. [12] XIAO Qing, LIU Qin-huo, LI Xiao-wen, et al(肖 青,柳钦火, 李小文,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2003, 22(5): 373. [13] WANG Xia, JIN Wei-qi(王 霞,金伟其). Transations of Beijing Institute of Technology(北京理工大学学报), 2003, 23(4): 405. [14] CHENG Jie, XIAO Qing, LIU Qin-huo, et al(程 洁,肖 青,柳钦火, 等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2007, 2(5): 376. [15] YAN Bo-kun, WANG Run-sheng, GAN Fu-ping, et al(闫柏琨, 王润生, 甘甫平, 等). Advances in Earth Science(地球科学进展), 2005, 20(9): 73.