A Wide-Range Multi-Spectral Pyrometer for True Temperature Measurement of Solid Rocket Engine Plume
WANG Chang-hui1, LIANG Mei1*, LIANG Lei2, SUN Xiao-gang3
1. School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
2. Liangshan Mining Industry Co., Ltd., Huili 615141, China
3. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Abstract:The lower limit of the existing multi-spectral pyrometer is higher than 1 173 K (900 ℃), which is not suitable for the measurement of the true temperature range of a new rocket plume (900~2 700 K). A wide-range multi-spectral pyrometer for true temperature measurement of the solid rocket engine plume is developed to solve the problem that existing multi-spectral pyrometers cannot measure the plume true temperature when the temperature is lower than 1 173 K. The pyrometer uses a parallel connection method of the photoelectric detectors adjacent pixels, and proposes a temperature calibration method for 900~1 173 K region on the basis of the logarithmic function, so as to broaden the range of the measuring temperature pyrometer. The field measurement is carried out on the three targets of a solid rocket engine plume and the experimental results verify the validity of the pyrometer.
Key words:True temperature; Multi-spectral pyrometer; Engine plume; Wide-range; Temperature calibration
[1] Zhao W, Zhu S, Li Y, et al. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 404.
[2] Wen C D. International Journal of Heat and Mass Transfer, 2010, 53(9-10): 2035.
[3] Khan M A, Allemand C, Eagar T W. Review of Scientific Instruments, 1991, 62(2): 403.
[4] Petter H, Fredrik S, Anna-Karin C, et al. Measurement Science and Technology, 2014, 25(2): 025011.
[5] Wang H, Chen D, Wang G, et al. Measurement, 2013, 46(10): 4023.
[6] Fu T, Tan P, Pang C, et al. Review of Scientific Instruments, 2011, 82(6): 064902.
[7] Xing J, Rana R S, Gu W. Opt Express, 2016, 24(17): 19185.
[8] Bakhir L P, Levashenko G I, Tamanovich V V. Combust Explos Shock Waves, 1980, 16(2): 181.
[9] Pluchino A B, Masturzo D E. AIAA Journal, 1981, 19(9): 1234.
[10] Kalman J, Allen D, Glumac N, et al. Journal of Thermophysics and Heat Transfer,2014, 29(1): 74.
[11] Fu T, Liu J, Duan M, et al. Review of Scientific Instruments,2014, 85(4): 044901.
[12] DAI Jing-min, LU Xiao-dong, CHU Zai-xiang, et al(戴景民, 卢小冬, 褚载祥, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学), 2000, 19(1): 64.
[13] Liang M, Sun B, Sun X, et al. International Journal of Thermophysics, 2017, 38(3): 35.
[14] FAN Chuan-xin, WANG Peng(范传新, 王 鹏). Journal of Astronautic Metrology and Measurement(宇航计测技术), 2006, 26(4): 18.
[15] Burt J M, Boyd I D. AIAA Journal, 2007, 45(12): 2872.