|
|
|
|
|
|
Experimental Investigation on the Electron Temperature of Laser-Induced Ti Plasmas |
YAO Hong-bing1, YANG Feng-xiao1*, YUAN Dong-qing2, TONG Yan-qun1, YANG Zhao3, CONG Jia-wei1, Emmanuel Asamoah1, WANG Cheng1 |
1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
2. Fuculty of Science, Huaihai Institute of Technology, Lianyungang 222069, China
3. Department of Physics, Lianyungang Normal College, Lianyungang 222006, China |
|
|
Abstract Laser pulse which was produced by Nd∶YAG pulse laser, with a wavelength of 1 064 nm and pulse width of 12 ns, was used to shock the Ti target under the condition of room temperature and atmospheric pressure. By changing the laser energy (180, 230 and 280 mJ) and adjusting the delay time through a digital delay generator of DG645, a series of plasma characteristic spectral lines of Ti alloy were obtained by a mechelle grating spectrometer in the time range of 0~500 ns. By analyzing the spectrum, 9 different TiⅠ and TiⅡ plasma lines can be found. It was shown that under the experimental conditions, the Ti target can fully absorb the energy to ionization and the ion spectral line has different evolution rate. The Saha-Boltzmann method was used to calculate and analyze the electron temperature of Ti plasma. The experimental results showed that at the same delay time, the greater of laser energy was used, the stronger of relative intensity of the line was obtained, and the higher of electron temperature could be induced. When the variable quantity of laser energy increased, the variable quantity of spectral line relative intensity will increase. In the delay time of 0~150 ns, the plasma electron temperature and the spectrum line relative intensity of the three kinds of laser energy decrease rapidly with the increase of the delay time, of which the electron temperature and spectrum line intensity decrease faster under laser energy of 280 mJ. During 150 to 250 ns, the electron temperature and spectrum line intensity have a slow rise with the increase of delay time, and the rising rate of the plasma electron temperature and the spectral line intensity were faster when laser energy is 180 mJ. In the range of 250 to 500 ns, the electron temperature and the spectrum line intensity of the three kinds of laser energy decrease slowly with the increase of the delay time.
|
Received: 2017-01-19
Accepted: 2017-05-26
|
|
Corresponding Authors:
YANG Feng-xiao
E-mail: 775288578@qq.com
|
|
[1] Miziolek A W, Palleschi V, Schechter I. Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications. Cambridge:Cambridge University Press, 2006.
[2] Cremers D A, Radzeimki L J. Handbook of Laser Induced Breakdown Spectroscopy. Wiley, New York, 2006.
[3] ZHANG Yong-kang, CHEN Ju-fang, XU Ren-jun (张永康,陈菊芳,许仁军). Chinese Journal of Laser(中国激光),2008,35(2): 1068.
[4] Fortes F J,Cabalin L M,Laserna J J. Spctrochimica Acta Part B,2008, 63(10): 1191.
[5] YAO Hong-bing,XING Bo,Donna Strickland(姚红兵,邢 博,Donna Strickland). High Power Laser and Particle Beams(强激光与粒子束) ,2012, 2 (9):2117.
[6] ZHAO Xiao-xia,LUO Wen-feng,ZHANG Xiang-wu(赵小侠,罗文峰,张相武). Laser Technology(激光技术),2013, 37 (1) : 93.
[7] YU Liang-ying,LU Ji-dong,ZHANG Juan(余亮英,陆继东,张 娟). Laser Technology(激光技术),2004,28(1): 103.
[8] Dann V J,Mathew M V, Nampoori V P N, et al. Plasma Sci. Technology, 2007,9: 456.
[9] Casavola A R, Colonna G, Giacomo A D, et al. Appl. Opt.,2003,42: 5963.
[10] MA Ni-na, YU Xiao-min,LI Jia-ze(马妮娜,余小敏,李家泽) Optical Technology(光学技术),2005, 31(5): 796.
[11] Holtgreven W L. In Plasma Diagnostics. Amsterdam: North Holland, 1968.
[12] Griem H R. Plasma Spectroscopy. New York: McGraw Hill, 1964. |
[1] |
XU Chen1, 2, HUA Xue-ming1, 2*, YE Ding-jian1, 2, MA Xiao-li1, 2, LI Fang1, 2, HUANG Ye1, 2. Study of the Effect of Interference during Multi-Wire GMAW Based on Spectral Diagnosis Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 1993-1997. |
[2] |
SONG Fei-long, JIN Di, JIA Min, SONG Zhi-jie. Spectral Characteristics Study of Atmospheric Pressure Argon Volume Dielectric Barrier Discharge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1675-1679. |
[3] |
LI Xue-chen, WU Kai-yue, ZHANG Qi, CHU Jing-di, WANG Biao, LIU Rui, JIA Peng-ying*. Effect of Frequency on Spectral Charteristics of Dielectric Barrier Discharge Excited by a Saw-Tooth Voltage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1380-1383. |
[4] |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, LI Shi-yu. Analysis of Metal Elements Manganese Using Solution Cathode Glow Discharge-Atomic Emission Spectrometry with Portable Spectrographs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1567-1571. |
[5] |
DONG Xiang-cheng1, YUAN Ping2*. Calculating the Electron Temperature of Lightning Channel Based on the Continuous Radiation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1209-1212. |
[6] |
CHEN Lin, DENG Guo-liang, FENG Guo-ying*, XUE Hong-yan, LI Jia-qi. Study on the Mechanism of Laser Paint Removal Based on LIBS and Time Resolved Characteristic Signal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 367-371. |
[7] |
DENG Lei, ZHANG Gui-xin*, LIU Cheng, XIE Hong. Measurement of the Gas Temperature in Microwave Plasma by Molecular Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 627-633. |
[8] |
ZHAO Xiao-tong, SUN Bing*, ZHU Xiao-mei, YAN Zhi-yu, LIU Yong-jun, LIU Hui. Characteristics of Light Emission and Radicals Formed by Microwave Discharge Electrolysis of an Aqueous Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3855-3858. |
[9] |
REN Lin-jiao, ZHANG Pei, QI Ru-bin, YIN Jing, LIU Shuai, ZHANG Ji-tao, CHEN Qing-hua, JIANG Li-ying*. Influencing Factors of Luminescence Properties of Carbon Dots Prepared by Ultrasonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3354-3359. |
[10] |
TANG Qian1, 3, SU Jin-hong2, 3, CAO Hong-yu1, 3, WANG Li-hao2, 3, GAO Ling-xing2, 3, ZHENG Xue-fang1, 3*. Study on the Interaction Between the Anti-HIV Drug Stavudine and the Blood Protein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3485-3492. |
[11] |
FENG Xiao-gui1, KONG Xue-yan2, HE Qian-ge1, WANG Jian-chen1, CHEN Jing1. A Modified Standard Addition Method and Its Application in ICP Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3579-3584. |
[12] |
WANG Kai1,LIU Min2,MAO Jie2,DENG Zi-qian2,WEN Kui1. Spectroscopic Method for Diagnosing PS-PVD Jet of Different Gas Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 2995-2999. |
[13] |
ZHENG Pei-chao, ZHAI Xiang, WANG Jin-mei*, YANG Rui. Analysis of Solution Cathode Glow Discharge Atomic Emission Spectroscopy by the Multiple Linear Regression Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3209-3213. |
[14] |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, YANG Rui. Quantitative Analysis of Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled with Internal Standard Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2900-2904. |
[15] |
XU Dan-zhi1, FENG Jing1, YANG Xiao-yun2, ZU En-dong1, CUI Xiao-ying2, LIN Jin-chang2, DONG Kun2*. Preparation and Spectroscopic Characteristics of CaAl2Si2O8∶Eu, Ce, Tb Fluorescent Material[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1804-1808. |
|
|
|
|