|
|
|
|
|
|
Concentration Estimation of Heavy Metal Cr in Soilsfrom Jiaojia-Type Gold Mining Areas Using Reflectance Spectroscopy |
WANG Fei1, WANG Ji-ning2, CAO Wen-tao1, KANG Ri-fei1, CAO Jian-fei1, WU Quan-yuan1* |
1. College of Geography and Environment, Shandong Normal University, Ji’nan 250014, China
2. Geological Environmental Monitoring Station of Shandong Province, Ji’nan 250014, China |
|
|
Abstract Heavy metal contamination has been rising markedly in mining area and a rapid and accurate assessment technique is of utmost importance. In this study, visible and near-infrared spectra combined with partial least square regression (PLSR) are developed to achieve the rapid monitoring of Cr in soilsfrom Jiaojia-type gold mines. A total of eighty five soil samples were collected to measure the spectra on the spot, thirty five of which were used for chemical analysis. PLSR models were established using primitive spectra (R) and first derivative (RD1), second derivative (RD2) and continuum removal (CR) data to find the most suitable calibration. The best predictive model that used RD1 spectra was applied to determine the contents of Cr in the untested samples and the spatial distribution map was created by universal kriging interpolation. Results illustrated that the major abundance of Cr was concentrated in the range of 36~48 mg·kg-1, with the highest value being 71.8 mg·kg-1 and lowest being 20.9 mg·kg-1. Furthermore, elevation and the orefield showed prominent impacts on the content values of Cr. Generally plain and the areas closed to gold mines tend to have higher concentrations of Cr.
|
Received: 2016-01-16
Accepted: 2016-05-19
|
|
Corresponding Authors:
WU Quan-yuan
E-mail: wqy6420582@163.com
|
|
[1] Chen T, Chang Q, Liu J, et al. Science of The Total Environment, 2016, 565: 155.
[2] Chen H, An J, Wei S, Gu J. PLoS ONE,2015,10(9): e0137694. doi:10.1371/journal.pone.0137694.
[3] Kooistra L, Wehrens R, Leuven R, et al. Analytica Chimica Acta, 2001, 446(1): 97.
[4] Grzegorz S, Gregory W M, Tomasz I S, et al. Journal of Environment Quality, 2004, 33: 2056.
[5] Wu Y, Chen J, Wu X, et al. Applied Geochemistry, 2005, 20(6): 1051.
[6] Kemper T, Sommer S. Environmental Science & Technology,2002,36(12): 2742.
[7] Cui L, Zhang Y J, Huang W E, et al. Analytical Chemistry, 2016, 88(6): 3164.
[8] Chen T, Chang Q, Clevers J, et al. Environmental Pollution, 2015, 206: 217.
[9] Shi T, Chen Y, Liu Y, et al. Journal of Hazardous Materials,2014,265: 166.
[10] Tan K, Ye Y Y, Du P J, et al. Spectroscopy and Spectral Analysis,2014,34(12): 3317.
[11] Mohamed E S, Ali A M, El Shirbeny M A, et al. Eurasian Soil Science, 2016, 49(6): 632.
[12] Xie X L, Sun B, Hao H T. Spectroscopy and Spectral Analysis,2007,27(6): 982.
[13] Song L, Jian J, Tan D J, et al. International Journal of Applied Earth Observation and Geoinformation,2015,34: 1.
[14] Shi T, Liu H, Chen Y, et al. Journal of Hazardous Materials, 2016, 308: 243.
[15] Wu J, Teng Y, Lu S, et al. PLoS ONE,2014,9(11): e112917. doi:10.1371/journal.pone.0112917.
[16] Barthès B G, Brunet D, Hien E, et al. Soil Biology and Biochemistry, 2008, 40(6): 1533.
[17] Dong J, Dai W, Xu J, et al. International Journal of Environmental Research and Public Health, 2016, 13(7): 640.
[18] Near-Infrared Spectroscopy in Ggriculture. Madison: American Society of Agronomy, 2004. 115.
[19] Galvez-Sola L, Morales J, Mayoral A M, et al. Talanta,2013,110: 81.
[20] Wang C, Huang C, Qian J, et al. PLoS ONE,2014,9(2): e88279. doi:10.1371/journal.pone.0088279.
[21] Rossel R A V, Walvoort D J J, McBratney A B, et al. Geoderma, 2006, 131(1): 59.
[22] He W, Lee J H, Hur J. Chemosphere, 2016, 150: 184.
[23] Ren H Y, Zhuang D F, Singh A N, et al. Pedosphere, 2009, 19(6): 719.
[24] Vohland M, Bossung C, Fründ H C. Journal of Plant Nutrition and Soil Science, 2009, 172(2): 201.
[25] Niazi N K, Singh B, Minasny B. International Journal of Environmental Science and Technology, 2015, 12(6): 1965.
[26] Xiao J Y, Wang Y, Zhang Q, et al. Hubei Agriculture Sciences,2013,52(6): 1251.
[27] Xie X L, Pan X Z, Sun B. Pedosphere, 2012, 22(3): 351.
[28] Mouazen A M, Kuang B, De Baerdemaeker J, et al. Geoderma, 2010, 158(1): 23.
[29] Rossel R A V, McGlynn R N, McBratney A B. Geoderma, 2006, 137(1): 70.
[30] Moros J, Vallejuelo S F O, Gredilla A, et al. Environmental science & technology, 2009, 43(24): 9314.
[31] Baveye P C, Laba M. Journal of Hazardous Materials, 2015, 285: 137.
[32] Gholizadeh A, Borvka L, Vaát R, et al. PLoS ONE,2015,10(2): e0117457.doi:10.1371/journal.pone.0117457.
[33] Albrecht R, Joffre R, Petit J L, et al. Environmental Science & Technology, 2008, 43(3): 804.
[34] Chang C W, Laird D A, Mausbach M J, et al. Soil Science Society of America Journal, 2001, 65(2): 480.
[35] Jiang Q, Chen Y, Guo L, et al. Remote Sensing, 2016, 8(9): 755.
[36] Wang C L, Pang X G, Yang L Y, et al. Geochimica, 2013, 42(6): 559.
[37] Stenberg B, Rossel R A V, Mouazen A M, et al. Advances in Agronomy, 2010, 107: 163. |
[1] |
CAO Xiao-feng, REN Hui-ru, LI Xing-zhi, YU Ke-qiang*, SU Bao-feng*. Discrimination of Winter Jujube’s Maturity Using Hyperspectral Technique Combined with Characteristic Wavelength and Spectral Indices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2175-2182. |
[2] |
XIE Ya-ping1, CHEN Feng-nong1, ZHANG Jing-cheng1, ZHOU Bin2, WANG Hai-jiang3, WU Kai-hua1*. Study on Monitoring of Common Diseases of Crops Based on Hyperspectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2233-2240. |
[3] |
LIU Jia1, YANG Ming-xing1, 2*, DI Jing-ru1, 2, HE Chong2. Spectra Characterization of the Uvarovite in Anorthitic Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1758-1762. |
[4] |
WU Hong-mei1, GUO Yu1*, CAO Jian-fang1, WU Zhong-li2. Derivatives of Aminobenzoic Acid Hydrazide-Based Fluorescence Probe for Selective Recognition of Cr3+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1463-1467. |
[5] |
XU Xing-wei1, 2, WANG Wei1*, LIU Cheng3, SHAN Chang-gong4, SUN You-wen1, HU Qi-hou1, TIAN Yuan1, HAN Xue-bing1, YANG Wei1. Observations of Total Columns of CO Based on Solar Absorption Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1329-1334. |
[6] |
LI Meng, GUO Jin-jia*, YE Wang-quan, LI Nan, ZHANG Zhi-hao, ZHENG Rong-er. Study on TDLAS System with a Miniature Multi-Pass Cavity for CO2 Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 697-701. |
[7] |
ZHANG Jian1, 2, MENG Jin1, 2, ZHAO Bi-quan1, 2, ZHANG Dong-yan3, XIE Jing4*. Research on the Chlorophyll Content (SPAD) Distribution Based on the Consumer-Grade Modified Near-Infrared Camera[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 737-744. |
[8] |
FANG Qing1, DONG Cheng-yu1, WANG Yu1, LIU Ying1,2*. The Interaction between Rolitetracycline and Human Serum Albumin Using Multi-Spectral Methods and Molecular Modeling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 990-996. |
[9] |
FANG Qing1, WANG Yi-run1, GUO Chen-hui1, LIU Ying1,2*. Interaction between Fleroxacin and Lysozyme by Using Multi-Spectral Techniques and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 654-659. |
[10] |
LIU Ping, MA Mei-hu*. Application of Hyperspectral Technology for Detecting Adulterated Whole Egg Powder[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 246-252. |
[11] |
LI Cui-ling1, 2, JIANG Kai1, 2, MA Wei1, 2, WANG Xiu1, 2*, MENG Zhi-jun1, 2, ZHAO Xue-guan1, 2, SONG Jian1, 2. Tomato Leaf Liriomyza Sativae Blanchard Pest Detection Based on Hyperspectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 253-257. |
[12] |
GUAN Ai-hong1,2, LI Zhi1,2, GE Hong-yi1,2. The Qualitative and Quantitative Detection of Potassium Alum in Sweet Potato Starch Based on Terahestz Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 267-270. |
[13] |
WANG Can1, WU Xin-hui1, LI Lian-qing2, WANG Yu-shun1, LI Zhi-wei1*. Convolutional Neural Network Application in Prediction of Soil Moisture Content[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 36-41. |
[14] |
ZHANG Jian1, LI Yong1, XIE Jing2*, LI Zong-nan1. Research on Optimal Near-Infrared Band Selection of Chlorophyll (SPAD) 3D Distribution about Rice Plant[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3749-3757. |
[15] |
HUA Jin1, ZHAO You-you1, GAO Yuan-hui1, ZHANG Li-hua1, HAO Jia-xue2, SONG Huan1, ZHAO Wen-ying2*. Rapid Detection of Fat Content in Meat with Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3424-3429. |
|
|
|
|