光谱学与光谱分析 |
|
|
|
|
|
Fingerprint Properties of Semi Synthetic Penicillin Pharmaceutical Wastewater |
TANG Jiu-kai1, WU Jing1*, CHENG Cheng1, LI Zhong-hua1, ZHAO Yu-fei1, WANG Shi-feng1, WANG Yong-jun2 |
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China2. Environmental Protection Research Institute Co. Ltd., North China Pharmaceutical Group, Hebei Province, Shijiazhuang 050015, China |
|
|
Abstract High-concentration antibiotics are detected in surface water from time to time. There has been an increasing demand for strengthening the supervision of the antibiotic pharmaceutical wastewater. Three-dimensional fluorescence technique is known as a rapid, simple and high-sensitivity method. The three-dimensional fluorescence spectrum can display organic components and it was named as aqueous fingerprint. In this paper, three-dimensional fluorescence characteristics of a typical semi synthetic penicillin pharmaceutical wastewater were studied. There were totally four fluorescence peaks in the aqueous fingerprint of this wastewater, locating in excitation wavelength/emission wavelength of 360/445, 255/445, 275/305 and 230/300 nm respectively. Fluorescence peak’s intensity within certain range related linearly to the relative concentration. The possible fluorescent pollutants related to Peak C and Peak D might be the mixture of D-(-)-A-4-Hydroxyphenylglycine Dane Salt Methyl Potassium (pharmaceutical intermediates), Amoxicillin (pharmaceutical product) and D(-)-4-Hydroxyphenylglycine (pharmaceutical hydrolysate). PH played an important role in the fluorescence characteristics of this wastewater. This indicated that the fluorescent organic pollutants in this wastewater might contain acid or base groups. The aqueous fingerprint technique could be used to monitor the discharge of semi synthetic penicillin pharmaceutical wastewater as a novel tool.
|
Received: 2015-08-05
Accepted: 2016-02-03
|
|
Corresponding Authors:
WU Jing
E-mail: wu_jing@mail.tsinghua.edu.cn
|
|
[1] WANG Dan, SUI Qian, ZHAO Wen-tao, et al(王 丹,隋 倩,赵文涛,等). Chinese Science Bulletin(科学通报), 2014, 09: 743. [2] CHENG Si-wei, LIU Jun, WANG Dao-bin(程思炜,刘 军,王道斌). Nanfang Metropolis Daily(南方都市报), 2015-06-18AA18. [3] CHEN Mao-fu, WU Jing, Lü Yan-li, et al(陈茂福,吴 静,律严励,等). Acta Optica Sinica(光学学报), 2008, 03: 578. [4] Liu Zhihong, Huang Zuyun, Cai Ruxiu. Spectrochimica Acta Part A, 2000, 56(9): 1787. [5] HUANG Dong-lan, CAO Jia-jia, XU Yong-qun, et al(黄冬兰,曹佳佳,徐永群,等). Journal of Shaoguan University(韶关学院学报), 2008, 09: 65. [6] LIU Zhi-hong, CAI Ru-xiu(刘志宏,蔡汝秀). Journal of Analytical Science(分析科学学报), 2000, 06: 516. [7] XU Xiu-jie(许秀杰). Technology Innovation and Application(科技创新与应用), 2012, 12: 33. [8] XU Hui-min, HE Guo-fu, XIANG Wei-ning, et al(徐慧敏,何国富,象伟宁,等). Environmental Science & Technology(环境科学与技术), 2014, 09: 110. [9] Jarafshan J Mobed, Sherry L Hemmingsen, Jennifer L Autry, et al. Environmental Science Technology, 1996, 30(10): 3061. [10] HU Xiao-dong(胡晓东). Pharmaceutical Wastewater Treatment Technology and Engineering Examples(制药废水处理技术及工程实例). Beijing:Chemical Industry Press(北京:化学工业出版社), 2008. 1. [11] YAO Yan-hong, LIN Bo(姚彦红,林 波). Jiangxi Chemical Industry(江西化工), 2008, 04: 33. [12] CHEN Guo-zhen(陈国珍). Fluorescence Analysis Method(荧光分析法). Beijing:Science Press(北京:科学出版社),1990. 83. [13] Henderson R K, Baker A, Murphy K R, et al. Water Research, 2009, 43(04): 863. [14] XU Jin-gou(许金钩). Fluorescence Analysis Method(荧光分析法). Beijing:Science Press(北京:科学出版社), 2006. 53. [15] WANG Huan-bo, ZHANG Yu-jun, XIAO Xue,et al(王欢博,张玉钧,肖 雪,等). China Environmental Science(中国环境科学), 2010, 30(8): 1032. |
[1] |
LIU Lu-yao1, ZHANG Bing-jian1,2*, YANG Hong3, ZHANG Qiong3. The Analysis of the Colored Paintings from the Yanxi Hall in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2054-2063. |
[2] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[3] |
SU Ya-jing, FAN Ting-ting, ZHANG Mei-na, LI Xia*. 4,4’-Bipyridine Bridged Chain Zn(Ⅱ) Complex: Synthesis, Crystal Structure and Fluorescence Sensitization for Tb (Ⅲ) Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2170-2174. |
[4] |
SUN Yan-wen1, CHANG Yu2, JIN Yu-fen1, XIE Wen-bing2, CHANG Jing1, YU Ting1*, PAN Li-hua2. Study of Synthesis and Spectral Property of Europium Cryptate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2189-2193. |
[5] |
ZHOU Meng-ran1, LAI Wen-hao1*, WANG Ya1, 2, HU Feng1, LI Da-tong1, WANG Rui1. Application of CNN in LIF Fluorescence Spectrum Image Recognition of Mine Water Inrush[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2262-2266. |
[6] |
CHEN Ji-wen1, XU Tao2, LIU Wei2, FANG Zhe1, QU Hua-yang1*, LIANG Yuan1, HU Xue-qiang1, LIU Ming-bo1. On-Line Determination of Light-Rare Earth Distribution by Energy Dispersive-X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2284-2289. |
[7] |
TIAN Yuan, ZHAO Xin, LIN Hai, LI De-sheng*. Irradiation Parameters of Dy3+ Doped Fluoride Borate Glass Phosphors under Laser Excitation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1665-1669. |
[8] |
LIU Ling1, YANG Ming-xing1, 2*, LU Ren1, Andy Shen1, HE Chong2. Study on EDXRF Method of Turquoise Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1910-1916. |
[9] |
ZHANG Wei1, XU Hua1, DUAN Lian-fei3, MA Ming-jun2, GAN Ting-ting2, LIU Jing4, WANG Liu-jun1, ZHANG Yu-jun2, ZHAO Nan-jing2,LIU Wen-qing2. Identification of Metal Components Characteristic Peak Position of Energy Dispersive X-Ray Fluorescence Spectra Based on the Wavelet Transformation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1904-1909. |
[10] |
ZHANG Li-jiao1,2, LAI Wan-chang1, XIE Bo2, 3, HUANG Jin-chu1, LI Dan1, WANG Guang-xi1, YANG Qiang1, CHEN Xiao-li1. The Effect of Filterson on the Determination of Trace Heavy Metal Cd in Light Matrix by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1917-1921. |
[11] |
LIU Ting, WANG Wen-qi, LIU Zhi-qun, ZHAO Yan-li, YI Ding-rong. Applications of CdSe/ZnS Quantum Dot in Optical Fiber Evanescent-Wave pH Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1944-1948. |
[12] |
ZHAN Yan1, ZU Hong-ru1, HUANG Di1*, HU Chao-fan1,2*. Rapid Synthesis of Graphene Oxide Quantum Dots via Hydrothermal Strategy for Cell Imaging Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1458-1462. |
[13] |
WU Hong-mei1, GUO Yu1*, CAO Jian-fang1, WU Zhong-li2. Derivatives of Aminobenzoic Acid Hydrazide-Based Fluorescence Probe for Selective Recognition of Cr3+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1463-1467. |
[14] |
CHANG Meng-fang1, JIA Meng-hui2, LI Lei1, CHEN Jin-quan1, XU Jian-hua1*. Time-Resolved Fluorescence and Thermodynamic Properties of Staphylococcal Nuclease[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1451-1457. |
[15] |
WANG Xiao-ping1,2, ZHANG Fei1,2,3*, YANG Sheng-tian4,AYINUER·Yushanjiang1,2,CHEN Yun5. Rapid Diagnosis of Surface Water Salt Content (WSC) in Ebinur Lake Watershed Based on 3-D Fluorescence Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1468-1475. |
|
|
|
|