光谱学与光谱分析 |
|
|
|
|
|
Data Processing Method of Asymmetric Spatial Heterodyne Interferogram for Wind Measurement |
SHEN Jing1, 2, 3, XIONG Wei1, 2, 3*, SHI Hai-liang1, 3, LI Zhi-wei1, 3, HU Guang-xiao1, 3, QIAO Yan-li1, 3 |
1. Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China2. University of Science and Technology of China, Hefei 230026, China3. Key Laboratory of Optical Calibration and Characterization of Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract By using doppler asymmetric spatial heterodyne spectroscopy and doppler effect, the wind speed can be achieved through detecting the interferogram of airglow in the upper atmosphere. This paper mainly analyses the data processing method of the interferogram and then derive the interferometer phase in order to get the wind speed. Comparing with the traditional spatial heterodyne spectroscopy, not only the noise and error of the system should be taken into consideration, but the window function that used to isolate the spectrum has a great influence during the data processing. Then the effect of window type and window width on phase difference of interferogram and the wind error curve are simulated through software. On basis of this the wind error curve under the noise of system and flat field factor are simulated by choosing appropriate window function. The window function simulation indicates that although the joining of window leads to a distortion of the interferogam and phase, the wind speed error can be less than 0.5% with Hanning window in the appropriate optical path difference. The noise of the system simulation indicates that the wind speed error increases with the noise, so it is necessary to control the system noise and preprocess the sampling data. The research on data processing method has great theoretical significance and practical value for designing the system parameter and improving the precision of spatial heterodyne wind detection.
|
Received: 2015-05-11
Accepted: 2015-09-28
|
|
Corresponding Authors:
XIONG Wei
E-mail: frank@aiofm.ac.cn
|
|
[1] Shepherd G G, Thuillier G, Gault W A, et al. Journal of Geophysical Research: Atmospheres (1984—2012), 1993, 98(D6): 10725. [2] Englert C R, Harlander J M, Emmert J T, et al. Optics Express, 2010, 18(26): 27416. [3] Solheim B, Brown S, Sioris C, et al. Atmosphere-Ocean, 2013,53(1): 1. [4] Englert C R, Harlander J M, Brown C M, et al. MIGHTI: The Spatial Heterodyne Instrument for Thermospheric Wind Measurements on Board the ICON Mission,in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment. Optical Society of America, 2015: FM4A. 1. [5] Englert C R, Harlander J M, Babcock D D, et al. Proc. SPIE, 2006, 6303: 63030T. [6] Englert C R, Babcock D D, Harlander J M. Applied Optics, 2007, 46(29): 7297. [7] Marr K D, Englert C R, Harlander J M. Optics Express, 2012, 20(9): 9535. [8] LI Zhi-wei, XIONG Wei, SHI Hai-liang, et al(李志伟,熊 伟,施海亮,等). Acta Optica Sinica(光学学报), 2014, 34(5): 0530001. |
[1] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[2] |
MA Dian-xu1, LIU Gang1*, OU Quan-hong1, YU Hai-chao1, LI Hui-mei1, SHI You-ming2. Discrimination of Common Wild Mushrooms by FTIR and Two-Dimensional Correlation Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2113-2122. |
[3] |
ZHANG Hao1, 2, 5, WANG Lin3, LONG Hong-ming2, 4, 5. Study on Composite Activating Mechanism of Alkali Steel Slag Cementations Materials by XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2302-2306. |
[4] |
LIU Yuan-yuan1, CHEN Jian-jun2, QIU Bo1*, FAN Xiao-dong1, WEI Shi-ya1, SONG Tao1, DUAN Fu-qing3*. A Processing Method for Low SNR Repetitive Observation Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2311-2314. |
[5] |
SUN Heng1, JIN Hang2,3, HU Qiang1, KANG Ping-de1, CHEN Jun-fei1, HE Jia-wei1*, WANG Yuan-zhong2,3*. Infrared Spectroscopy Combined with Chemometrics for Rapid Determination of Total Flavonoids in Dendrobium Officinale[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1702-1707. |
[6] |
LI Yun1,2,3, ZHANG Ji1,2, LIU Fei4, XU Fu-rong3, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2,3*. Prediction of Total Polysaccharides Content in P. notoginseng Using FTIR Combined with SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1696-1701. |
[7] |
XU Kun1, 2, 3, WANG Ju-lin1, 2, 3*, HE Qiu-ju4. The Influence of Alum in Alum Gelatin Solution on Cellulose,Calcium Carbonate and Gelatin in XUAN Paper[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1829-1833. |
[8] |
XU Xing-wei1, 2, WANG Wei1*, LIU Cheng3, SHAN Chang-gong4, SUN You-wen1, HU Qi-hou1, TIAN Yuan1, HAN Xue-bing1, YANG Wei1. Observations of Total Columns of CO Based on Solar Absorption Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1329-1334. |
[9] |
ZHANG Guang-na1, LIN Xiang-jie2, LI Yun-mei3, XU Shu-jian1, ZHANG Yu-lan4*. Fourier Transform Infrared Spectroscopy Analysis of Humic Acids from Brown and Cinnamon Soils under Robinia pseudoacacia Forest[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1298-1302. |
[10] |
LIU Xing-bin, WANG Yue*, HAN Xiao-ri*, MA Bin. Feasibility of Rapid Evaluation of Urea-Formaldehyde Fertilizer by Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 750-755. |
[11] |
XU Bei-lei1, SUN Su-qin2, ZHANG Gui-jun3, LI Wen-lan1, WANG Rui4, ZHANG Yan1, JIN Zhe-xiong1*, SONG Lin5. Study on Aqueous Extracts of Three Kinds of Radix Puerariae in Clinical by 2D-IR Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 800-804. |
[12] |
ZHAO Ming-fu1, 2, TANG Ping1, 2, TANG Bin1, 2, 3*, HE Peng3, XU Yang-fei1, 2, DENG Si-xing1, 2, SHI Sheng-hui1, 2. Research on Denoising of UV-Vis Spectral Data for Water Quality Detection with Compressed Sensing Theory Based on Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 844-850. |
[13] |
ZHU Gao-feng1, 2, HU Xin1, ZHU Hong-qiu1*, HU En-ze1, ZHU Jian-ping3. The Multi-Beam Interference Suppression for Measuring Penicillin Vial’s Oxygen Concentration Based on Tunable Diode Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 372-376. |
[14] |
ZHANG Qi, FANG Hong-xia, ZHANG Hui-li, QIN Dan, HONG Zhi, DU Yong*. Vibrational Spectroscopic Characterization of the Co-Crystal and the Forming Condition between γ-Aminobutyric Acid and Benzoic Acid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3786-3792. |
[15] |
GAO Jian-hua1,2, LIANG Jing-qiu1, Lü Jin-guang1*, LIANG Zhong-zhu1, QIN Yu-xin1, WANG Wei-biao1. A Stepped Mirror Based Temporally and Spatially Modulated Imaging Fourier Transform Spectrometer: Principle and Data Processing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3932-3939. |
|
|
|
|